Knowing how well an activity is performed is important for home rehabilitation. We would like to not only know if a motion is being performed correctly, but also in what way the motion is incorrect so that we may provide feedback to the user. This paper describes methods for assessing human motion quality using body-worn tri-axial accelerometers and gyroscopes. We use multi-label classifiers to detect subtle errors in exercise performances of eight individuals with knee osteoarthritis, a degenerative disease of the cartilage. We present results obtained using various machine learning methods with decision tree base classifiers. The classifier can detect classes in multi-label data with 75% sensitivity, 90% specificity and 80% accuracy. The methods presented here form the basis for an at-home rehabilitation device that will recognize errors in patient exercise performance, provide appropriate feedback on the performance, and motivate the patient to continue the prescribed regimen.
Chang PY, Taylor PE, Jackson MB. Voltage imaging reveals the CA1 region at the CA2 border as a focus for epileptiform discharges and longterm potentiation in hippocampal slices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.