This research investigates the applicability of an ANN and genetic algorithms for modeling and multiobjective optimization of the thermal conductivity and viscosity of water-based spinel-type MnFe2O4 nanofluid. Levenberg-Marquardt, quasi-Newton, and resilient backpropagation methods are employed to train the ANN. The support vector machine (SVM) method is also presented for comparative purposes. Experimental results demonstrate the efficacy of the developed ANN with the LM-BR training algorithm and the 3-10-10-2 structure for the prediction of the thermophysical properties of nanofluids in terms of the significantly superior accuracy compared to developing the correlation and employing SVM regression. Moreover, the genetic algorithm is implemented to determine the optimal conditions, i.e., maximum thermal conductivity and minimum nanofluid viscosity, based on the developed ANN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.