Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel “negative” cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual’s fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.
Epigenetic processes play a key role in regulating gene expression. Genetic variants that disrupt chromatin‐modifying proteins are associated with a broad range of diseases, some of which have specific epigenetic patterns, such as aberrant DNA methylation (DNAm), which may be used as disease biomarkers. While much of the epigenetic research has focused on cancer, there is a paucity of resources devoted to neurodevelopmental disorders (NDDs), which include autism spectrum disorder and many rare, clinically overlapping syndromes. To address this challenge, we created EpigenCentral, a free web resource for biomedical researchers, molecular diagnostic laboratories, and clinical practitioners to perform the interactive classification and analysis of DNAm data related to NDDs. It allows users to search for known disease‐associated patterns in their DNAm data, classify genetic variants as pathogenic or benign to assist in molecular diagnostics, or analyze patterns of differential methylation in their data through a simple web form. EpigenCentral is freely available at http://epigen.ccm.sickkids.ca/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.