Forest fires are caused naturally by lightning, high atmospheric temperatures, and dryness. Forest fires have ramifications for both climatic conditions and anthropogenic ecosystems. According to various research studies, there has been a noticeable increase in the frequency of forest fires in India. Between 1 January and 31 March 2022, the country had 136,604 fire points. They activated an alerting system that indicates the location of a forest fire detected using MODIS sensor data from NASA Aqua and Terra satellite images. However, the satellite passes the country only twice and sends the information to the state forest departments. The early detection of forest fires is crucial, as once they reach a certain level, it is hard to control them. Compared with the satellite monitoring and detection of fire incidents, video-based fire detection on the ground identifies the fire at a faster rate. Hence, an unmanned aerial vehicle equipped with a GPS and a high-resolution camera can acquire quality images referencing the fire location. Further, deep learning frameworks can be applied to efficiently classify forest fires. In this paper, a cheaper UAV with extended MobileNet deep learning capability is proposed to classify forest fires (97.26%) and share the detection of forest fires and the GPS location with the state forest departments for timely action.
E-commerce platforms have been around for over two decades now, and their popularity among buyers and sellers alike has been increasing. With the COVID-19 pandemic, there has been a boom in online shopping, with many sellers moving their businesses towards e-commerce platforms. Product pricing is quite difficult at this increased scale of online shopping, considering the number of products being sold online. For instance, the strong seasonal pricing trends in clothes—where Brand names seem to sway the prices heavily. Electronics, on the other hand, have product specification-based pricing, which keeps fluctuating. This work aims to help business owners price their products competitively based on similar products being sold on e-commerce platforms based on the reviews, statistical and categorical features. A hybrid algorithm X-NGBoost combining extreme gradient boost (XGBoost) with natural gradient boost (NGBoost) is proposed to predict the price. The proposed model is compared with the ensemble models like XGBoost, LightBoost and CatBoost. The proposed model outperforms the existing ensemble boosting algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.