Human retrotransposons generate structural variation and genomic diversity through ongoing retrotransposition and non-allelic homologous recombination. Cell culture retrotransposition assays have provided great insight into the genomic impact of retrotransposons, in particular, LINE-1(L1) and Alu elements; however, no such assay exists for the youngest active human retrotransposon, SINE-VNTR-Alu (SVA). Here we report the development of an SVA cell culture retrotransposition assay. We marked several SVAs with either neomycin or EGFP retrotransposition indicator cassettes. Engineered SVAs retrotranspose using L1 proteins supplemented in trans in multiple cell lines, including U2OS osteosarcoma cells where SVA retrotransposition is equal to that of an engineered L1. Engineered SVAs retrotranspose at 1-54 times the frequency of a marked pseudogene in HeLa HA cells. Furthermore, our data suggest a variable requirement for L1 ORF1p for SVA retrotransposition. Recovered engineered SVA insertions display all the hallmarks of LINE-1 retrotransposition and some contain 5' and 3' transductions, which are common for genomic SVAs. Of particular interest is the fact that four out of five insertions recovered from one SVA are full-length, with the 5' end of these insertions beginning within 5 nt of the CMV promoter transcriptional start site. This assay demonstrates that SVA elements are indeed mobilized in trans by L1. Previously intractable questions regarding SVA biology can now be addressed.
Despite the immense significance retrotransposons have had for genome evolution much about their biology is unknown, including the processes of forming their ribonucleoprotein (RNP) particles and transporting them about the cell. Suppression of retrotransposon expression, together with the presence of retrotransposon sequence within numerous mRNAs, makes tracking endogenous L1 RNP particles in cells problematic. We overcame these difficulties by assaying in living and fixed cells tagged-RNPs generated from constructs expressing retrotransposition-competent L1s. In this way, we demonstrate for the first time the subcellular colocalization of L1 RNA and proteins ORF1p and ORF2p, and show their targeting together to cytoplasmic foci. Foci are often associated with markers of cytoplasmic stress granules. Furthermore, mutation analyses reveal that ORF1p can direct L1 RNP distribution within the cell. We also assayed RNA localization of the non-autonomous retrotransposons Alu and SVA. Despite a requirement for the L1 integration machinery, each manifests unique features of subcellular RNA distribution. In nuclei Alu RNA forms small round foci partially associated with marker proteins for coiled bodies, suborganelles involved in the processing of non-coding RNAs. SVA RNA patterning is distinctive, being cytoplasmic but without prominent foci and concentrated in large nuclear aggregates that often ring nucleoli. Such variability predicts significant differences in the life cycles of these elements.
Long INterspersed Elements (LINE-1s, L1s) are responsible for over one million retrotransposon insertions and 8000 processed pseudogenes (PPs) in the human genome. An active L1 encodes two proteins (ORF1p and ORF2p) that bind with L1 RNA and form L1-ribonucleoprotein particles (RNPs). Although it is believed that the RNA-binding property of ORF1p is critical to recruit other mobile RNAs to the RNP, the identity of recruited RNAs is largely unknown. Here, we used crosslinking and immunoprecipitation followed by deep sequencing to identify RNA components of L1-RNPs. Our results show that in addition to retrotransposed RNAs [L1, Alu and SINE-VNTR-Alu (SVA)], L1-RNPs are enriched with cellular mRNAs, which have PPs in the human genome. Using purified L1-RNPs, we show that PP-source RNAs preferentially serve as ORF2p templates in a reverse transcriptase assay. In addition, we find that exogenous ORF2p binds endogenous ORF1p, allowing reverse transcription of the same PP-source RNAs. These data demonstrate that interaction of a cellular RNA with the L1-RNP is an inside track to PP formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.