Broad host-range mini-Tn7 vectors facilitate integration of single-copy genes into bacterial chromosomes at a neutral, naturally evolved site. Here we present a protocol for employing the mini-Tn7 system in bacteria with single attTn7 sites, using the example Pseudomonas aeruginosa. The procedure involves, first, cloning of the genes of interest into an appropriate mini-Tn7 vector; second, co-transfer of the recombinant mini-Tn7 vector and a helper plasmid encoding the Tn7 site-specific transposition pathway into P. aeruginosa by either transformation or conjugation, followed by selection of insertion-containing strains; third, PCR verification of mini-Tn7 insertions; and last, optional Flp-mediated excision of the antibiotic-resistance selection marker present on the chromosomally integrated mini-Tn7 element. From start to verification of the insertion events, the procedure takes as little as 4 d and is very efficient, yielding several thousand transformants per microgram of input DNA or conjugation mixture. In contrast to existing chromosome integration systems, which are mostly based on species-specific phage or more-or-less randomly integrating transposons, the mini-Tn7 system is characterized by its ready adaptability to various bacterial hosts, its site specificity and its efficiency. Vectors have been developed for gene complementation, construction of gene fusions, regulated gene expression and reporter gene tagging.
For many bacteria, cloning and expression systems are either scarce or nonexistent. We constructed several mini-Tn7 vectors and evaluated their potential as broad-range cloning and expression systems. In bacteria with a single chromosome, including Pseudomonas aeruginosa, Pseudomonas putida and Yersinia pestis, and in the presence of a helper plasmid encoding the site-specific transposition pathway, site- and orientation-specific Tn7 insertions occurred at a single attTn7 site downstream of the glmS gene. Burkholderia thailandensis contains two chromosomes, each containing a glmS gene and an attTn7 site. The Tn7 system allows engineering of diverse genetic traits into bacteria, as demonstrated by complementing a biofilm-growth defect of P. aeruginosa, establishing expression systems in P. aeruginosa and P. putida, and 'GFP-tagging' Y. pestis. This system will thus have widespread biomedical and environmental applications, especially in environments where plasmids and antibiotic selection are not feasible, namely in plant and animal models or biofilms.
Because of Burkholderia pseudomallei's classification as a select agent in the United States, genetic manipulation of this bacterium is strictly regulated. Only a few antibiotic selection markers, including gentamicin, kanamycin, and zeocin, are currently approved for use with this bacterium, but wild-type strains are highly resistant to these antibiotics. To facilitate routine genetic manipulations of wild-type strains, several new tools were developed. A temperature-sensitive pRO1600 broad-host-range replicon was isolated and used to construct curable plasmids where the Flp and Cre recombinase genes are expressed from the rhamnose-regulated Escherichia coli P BAD promoter and kanamycin (nptI) and zeocin (ble) selection markers from the constitutive Burkholderia thailandensis ribosomal P S12 or synthetic bacterial P EM7 promoter. Flp and Cre site-specific recombination systems allow in vivo excision and recycling of nptII and ble selection markers contained on FRT or loxP cassettes. Finally, expression of Tn7 site-specific transposase from the constitutive P1 integron promoter allowed development of an efficient site-specific chromosomal integration system for B. pseudomallei. In conjunction with a natural transformation method, the utility of these new tools was demonstrated by isolating an unmarked ⌬(amrRAB-oprA) efflux pump mutant. Exploiting natural transformation, chromosomal DNA fragments carrying this mutation marked with zeocin resistance were transferred between the genomes of two different B. pseudomallei strains. Lastly, the deletion mutation was complemented by a chromosomally integrated mini-Tn7 element carrying the amrAB-oprA operon. The new tools allow routine select-agentcompliant genetic manipulations of B. pseudomallei and other Burkholderia species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.