Problem statement: Efficient utilization of energy has been a core area of research in wireless sensor networks. Sensor nodes deployed in a network are battery operated. As batteries cannot be recharged frequently in the field setting, energy optimization becomes paramount in prolonging the battery-life and, consequently, the network lifetime. The communication module utilizes a major part of the energy expenditure of a sensor node. Hence data compression methods to reduce the number of bits to be transmitted by the communication module will significantly reduce the energy requirement and increase the lifetime of the sensor node. The present objective of the study contracted with the designing of efficient data compression algorithm, specifically suited to wireless sensor network. Approach: In this investigation, the natural correlation in a typical wireless sensor network data was exploited and a modified Huffman algorithm suited to wireless sensor network was designed. Results: The performance of the modified adaptive Huffman algorithm was analyzed and compared with the static and adaptive Huffman algorithm. The results indicated better compression ratio. Conclusion: Hence the proposed algorithm outperformed both static and adaptive Huffman algorithms, in terms of compression ratio and was well suited to embedding in sensor nodes for compressed data communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.