Coal fly ash, an industrial by-product, is derived from coal combustion in thermal power plants. It is one of the most complex anthropogenic materials, and its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and ongoing need to develop new recycling methods for coal fly ash. The present review first describes the generation, physicochemical properties and hazards of coal fly ash at the global level, and then focuses on its current and potential applications, including use in the soil amelioration, construction industry, ceramic industry, catalysis, depth separation, zeolite synthesis, etc.Finally, the advantages and disadvantages of these applications, the mode of fly ash utilization worldwide and directions for future research are considered.
Inclusion of ground granulated blast furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the workability and strength properties of fly ash based geopolymer concrete. In this study, GGBFS was added as 0%, 10% and 20 % of the total binder with variable activator content (40 and 35%) and sodium silicate to sodium hydroxide ratio (1.5 to 2.5). Significant increase in strength and some decrease in the workability were observed in geopolymer concretes with higher GGBFS and lower sodium silicate to sodium hydroxide ratio in the mixtures. Similar to OPC concrete, development of tensile strength correlated well with the compressive strength of ambient-cured geopolymer concrete. The predictions of tensile strength from compressive strength of ambient-cured geopolymer concrete using the ACI 318 and AS 3600 codes tend to be similar to that for OPC concrete. The predictions are more conservative for heat-cured geopolymer concrete than for ambient-cured geopolymer concrete. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature
Inclusion of ground granulated blast furnace slag (GGBFS) with class F fly-ash can have a significant effect on the setting and strength development of geopolymer binders when cured in ambient temperature. This paper evaluates the effect of different proportions of GGBFS and activator content on the workability and strength properties of fly ash based geopolymer concrete. In this study, GGBFS was added as 0%, 10% and 20 % of the total binder with variable activator content (40 and 35%) and sodium silicate to sodium hydroxide ratio (1.5 to 2.5). Significant increase in strength and some decrease in the workability were observed in geopolymer concretes with higher GGBFS and lower sodium silicate to sodium hydroxide ratio in the mixtures. Similar to OPC concrete, development of tensile strength correlated well with the compressive strength of ambient-cured geopolymer concrete. The predictions of tensile strength from compressive strength of ambient-cured geopolymer concrete using the ACI 318 and AS 3600 codes tend to be similar to that for OPC concrete. The predictions are more conservative for heat-cured geopolymer concrete than for ambient-cured geopolymer concrete. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature
This paper investigates comprehensive knowledge regarding joining CFRP and aluminium alloys in available literature in terms of available methods, bonding processing and mechanism and properties. The methods employed comprise the use of adhesive, self-piercing rivet, bolt, clinching and welding to join only CFRP and aluminium alloys. The non-thermal joining methods received great attention though the welding process has high potential in joining these materials. Except adhesive bonding and welding, other joining methods require the penetration of metallic pins through joining parts and therefore, surface preparation is unimportant. No model is found to predict the properties of jointed structures, which makes it difficult to select one over another in applications. The choice of bonding methods depends primarily on the specific applications. The load-bearing mechanism of bolted joints is predominantly the friction that is the first stage resistance. Hybrid joints performance is enhanced by combining rivets, clinch or bolts with adhesives.
Fly ash geopolymer is an emerging alternative binder with low environmental impact and potential to enhance sustainability of concrete construction. Most previous works examined the properties of fly ash-based geopolymer concrete (GPC) subjected to curing at elevated temperature. To extend the use of GPC in cast-in-situ applications, this paper investigated the properties of blended low-calcium fly ash geopolymer concrete cured in ambient condition. Geopolymer concretes were produced using low-calcium fly ash with a small percentage of additive such as ground granulated blast furnace slag (GGBFS), ordinary Portland cement (OPC) or hydrated lime to enhance early age properties. Samples were cured in room environment (18-23 o C and 70±10% relative humidity) until tested. The results show that, density of hardened GPC mixtures is similar to that of normal-weight OPC concrete. Inclusion of additives enhanced the mechanical strengths significantly as compared to control concrete. For similar compressive strength, flexural strength of ambient cured GPC was higher than that of OPC concrete. Modulus of elasticity of ambient cured GPC tend to be lower than that of OPC concrete of similar grade. Prediction of elastic modulus by Standards and empirical equations for OPC concrete were found not conservative for GPC. Thus, an equation for conservative prediction of elastic modulus of GPC is proposed. *Manuscript Click here to view linked References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.