Interleukin-5 (IL-5), which is produced by CD4؉ T helper 2 (Th2) cells, but not by Th1 cells, plays a key role in the development of eosinophilia in asthma. Despite increasing evidence that the outcome of many diseases is determined by the ratio of the two subsets of CD4 ؉ T helper cells, Th1 and Th2, the molecular basis for Th1-and Th2-specific gene expression remains to be elucidated. We previously established a critical role for the transcription factor GATA-3 in IL-5 promoter activation in EL-4 cells, which express both Th1-and Th2-type cytokines. Our studies reported here demonstrate that GATA-3 is critical for expression of the IL-5 gene in bona fide
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation. Objectives: To determine changes in expression and role of microRNAs in IPF. Methods: RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-b. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry. Measurements and Main Results: Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-b down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and a-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells. Conclusions: Our results indicate a role for microRNAs in IPF. The downregulation of let-7d in IPF and the profibrotic effects of this downregulation in vitro and in vivo suggest a key regulatory role for this microRNA in preventing lung fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT 00258544).
The transcription factor GATA-3 is expressed in T helper 2 (TH2) but not TH1 cells and plays a critical role in TH2 differentiation and allergic airway inflammation in vivo. Mice that lack the p50 subunit of nuclear factor kappa B (NF-kappa B) are unable to mount airway eosinophilic inflammation. We show here that this is not due to defects in TH2 cell recruitment but due to the inability of the p50-/- mice to produce interleukin 4 (IL-4), IL-5 and IL-13: cytokines that play distinct roles in asthma pathogenesis. CD4+ T cells from p50-/- mice failed to induce Gata3 expression under TH2-differentiating conditions but showed unimpaired T-bet expression and interferon gamma (IFN-gamma) production under TH1-differentiating conditions. Inhibition of NF-kappa B activity prevented GATA-3 expression and TH2 cytokine production in developing, but not committed, TH2 cells. Our studies provide a molecular basis for the need for both T cell receptor and cytokine signaling for GATA-3 expression and, in turn, TH2 differentiation.
The proto‐oncogene c‐kit encodes a transmembrane tyrosine protein kinase receptor for an unknown ligand and is allelic with the murine white‐spotting locus (W). Mutations at the W locus affect various aspects of hematopoiesis, the proliferation and migration of primordial germ cells and melanoblasts during development. The original W mutation and W37 are severe lethal mutations when homozygous. In the heterozygous state the W mutation has a weak phenotype while W37 has dominant characteristics. Wv and W41 are weak W mutations with dominant characteristics. We have characterized the molecular basis of these four W mutations and determined their effects on mast cell differentiation by using a fibroblast/mast cell co‐culture assay. We show that W37, Wv and W41 are the result of missense mutations in the kinase domain of the c‐kit coding sequence (W37 E‐‐‐‐K at position 582; Wv T‐‐‐‐M position 660 and W41 V‐‐‐‐M position 831), which affect the c‐kit associated tyrosine kinase to varying degrees. The c‐kit protein products in homozygous mutant mast cells are expressed normally, although the 160 kd cell membrane form of the c‐kitW37 protein displays accelerated turnover characteristics. The W mutation is the result of a 78 amino acid deletion which includes the transmembrane domain of the c‐kit protein. A 125 kd c‐kit protein was detected in homozygous W/W mast cells which lacks kinase activity and is not expressed on the cell surface.(ABSTRACT TRUNCATED AT 250 WORDS)
Results SA subjects harbor more IFN-γ + CD4+ T cells in their airways compared with MMA subjects. A total of 66 subjects, 33 classified with MMA and 33 classified with SA, were included in this study; details of patient characteristics are included in Table 1. Of note, biological samples, such as cells in BAL fluid used for differential cell counts and cytokine expression, were analyzed from a subset of these subjects based on availability, as described in each figure legend. Since the recovery of BAL Severe asthma (SA) is a challenge to control, as patients are not responsive to high doses of systemic corticosteroids (CS). In contrast, mild-moderate asthma (MMA) is responsive to low doses of inhaled CS, indicating that Th2 cells, which are dominant in MMA, do not solely orchestrate SA development. Here, we analyzed broncholalveolar lavage cells isolated from MMA and SA patients and determined that IFN-γ (Th1) immune responses are exacerbated in the airways of individuals with SA, with reduced Th2 and IL-17 responses. We developed a protocol that recapitulates the complex immune response of human SA, including the poor response to CS, in a murine model. Compared with WT animals, Ifng -/-mice subjected to this SA model failed to mount airway hyperresponsiveness (AHR) without appreciable effect on airway inflammation. Conversely, AHR was not reduced in Il17ra -/-mice, although airway inflammation was lower. Computer-assisted pathway analysis tools linked IFN-γ to secretory leukocyte protease inhibitor (SLPI), which is expressed by airway epithelial cells, and IFN-γ inversely correlated with SLPI expression in SA patients and the mouse model. In mice subjected to our SA model, forced SLPI expression decreased AHR in the absence of CS, and it was further reduced when SLPI was combined with CS. Our study identifies a distinct immune response in SA characterized by a dysregulated IFN-γ/SLPI axis that affects lung function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.