Humans engagement in music rests on underlying elements such as the listeners’ cultural background and interest in music. These factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing. Here we recorded cortical signals as participants listened to Bach melodies. We assessed the relative contributions of acoustic versus melodic components of the music to the neural signal. Melodic features included information on pitch progressions and their tempo, which were extracted from a predictive model of musical structure based on Markov chains. We related the music to brain activity with temporal response functions demonstrating, for the first time, distinct cortical encoding of pitch and note-onset expectations during naturalistic music listening. This encoding was most pronounced at response latencies up to 350 ms, and in both planum temporale and Heschl’s gyrus.
SummaryHumans engagement in music rests on underlying elements such as the listeners’ cultural background and general interest in music, all shaping the way music is processed in the brain and perceived. Crucially, these factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing of music. Here we recorded electroencephalographic and electrocorticographic brain responses as participants listened to Bach melodies. We assessed the relative contributions of the acoustic versus melodic components of the music to the neural signal. Acoustic features included envelope and its derivative. Melodic features included information on melodic progressions (pitch) and their tempo (onsets), which were extracted from a Markov model predicting the next note based on a corpus of Western music and the preceding proximal musical context. We related the music to brain activity with a linear temporal response function, and demonstrated that cortical responses to music encode melodic expectations. Specifically, individual-subject neural signals were better predicted by a combination of acoustic and melodic expectation features than by either alone. This effect was most pronounced at response latencies up to 350ms, and in both planum temporale and Heschl’s gyrus. Finally, expectations of pitch and onset-time of musical notes exerted independent cortical effects, and such influences were modulated by the listeners’ musical expertise. Overall, this study demonstrates how the interplay of experimental and theoretical approaches can yield novel insights into the cortical encoding of melodic expectations.
The human auditory cortex simultaneously processes speech and determines the location of a speaker in space. Neuroimaging studies in humans have implicated core auditory areas in processing the spectrotemporal and the spatial content of sound; however, how these features are represented together is unclear. We recorded directly from human subjects implanted bilaterally with depth electrodes in core auditory areas as they listened to speech from different directions. We found local and joint selectivity to spatial and spectrotemporal speech features, where the spatial and spectrotemporal features are organized independently of each other. This representation enables successful decoding of both spatial and phonetic information. Furthermore, we found that the location of the speaker does not change the spectrotemporal tuning of the electrodes but, rather, modulates their mean response level. Our findings contribute to defining the functional organization of responses in the human auditory cortex, with implications for more accurate neurophysiological models of speech processing.
Heschl’s gyrus (HG) is a brain area that includes the primary auditory cortex in humans. Due to the limitations in obtaining direct neural measurements from this region during naturalistic speech listening, the functional organization and the role of HG in speech perception remain uncertain. Here, we used intracranial EEG to directly record neural activity in HG in eight neurosurgical patients as they listened to continuous speech stories. We studied the spatial distribution of acoustic tuning and the organization of linguistic feature encoding. We found a main gradient of change from posteromedial to anterolateral parts of HG. We also observed a decrease in frequency and temporal modulation tuning and an increase in phonemic representation, speaker normalization, speech sensitivity, and response latency. We did not observe a difference between the two brain hemispheres. These findings reveal a functional role for HG in processing and transforming simple to complex acoustic features and inform neurophysiological models of speech processing in the human auditory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.