Magnesium alloys are advanced, light materials used widely in industries and milling is one of the material removal processes that are extensively used. In this present study, the experimental work has been carried out based on a Box-Behnken design by mainly considering three factors, i.e., cutting speed, feed, and depth of cut. The first part of in this study, the effects of Response Surface methodology (RSM) and Artificial Neural Network (ANN) models were evaluated and compared. The RSM and ANN models provide the average error of 2.40 % and 1.52 %, respectively, it recommends that ANN is a more efficient methodology for the prediction of the optimal output response than RSM. The predicted model has been coupled with evolutionary optimization technique genetic algorithm (GA) to determine the optimum cutting parameters to attain the minimal surface roughness with respect to the wide ranges of machining parameters and GA suggest the surface roughness of 1.0926 μm with the optimized machining parameters. The evaluation of these observations proves that the proposed methods are capable of determining the optimum machining parameters for modern materials. Keywords: artificial neural network, genetic algorithm, magnesium alloy, milling, optimization Zlitine na osnovi magnezija (Mg) so napreden lahek material, ki se pogosto uporablja v razli~nih vejah industrije. Njegova mehanska obdelava z rezkanjem je ena od najpogostej{ih metod odstranjevanja materiala za dokon~no oblikovanje razli~nih industrijskih izdelkov. V predstavljeni {tudiji avtorji opisujejo eksperimentalno delo izvedeno na osnovi Box-Behnkenovega dizajna z upo{tevanjem treh faktorjev: rezalne hitrosti, pomika in globine reza. V prvem delu te {tudije so avtorji ovrednotili in primerjali u~inke dveh uporabljenih modelov: metodologije reakcije povr{ine (RSM; angl.: Response Surface Methodology) in umetne nevronske mre`e (ANN, angl: Artificial Neural Network). RSM in ANN modela sta predvidela povpre~no 2,40 % oz. 1,52 % napako. To pomeni, da je ANN u~inkovitej{a methodologija za napoved optimalne (reakcije) storilnosti. Model za prognozo so avtorji zdru`ili z evolucijsko optimizacijsko tehniko genetskih algoritmov (GA) in na ta na~in dolo~ili optimalne rezalne parametre za dosego minimalne povr{inske hrapavosti v obmo~ju dokaj {iroko izbranih parametrov mehanske obdelave. GA napoveduje povr{insko hrapavost 1.0926 μm pri optimiziranih parametrih mehanske obdelave. Ovrednotenje teh opazovanj je potrdilo da, je s predlaganimi metodami mo`no dolo~iti optimalne parametre mehanske obdelave modernih materialov. Klju~ne besede: umetna nevronska mre`a, genetski algoritem, zlitina na osnovi Mg, rezkanje, optimizacija
This research examined at the optimum cutting parameters for producing minimum surface roughness and maximum Material Removal Rate (MRR) when turning magnesium alloy AZ91D. Cutting speed (m/min), feed (mm/rev), and cut depth (mm) have all been considered in the experimental study. To find the best cutting parameters, Taguchi's technique and Response Surface Methodology (RSM), an evolutionary optimization techniques Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were employed. GA gives better results of 34.04% lesser surface roughness and 15.2% higher MRR values when compared with Taguchi method. The most optimal values of surface roughness and MRR is received in multi objective optimization NSGA-II were 0.7341 µm and 9460 mm3 /min for the cutting parameters cutting speed at 140.73m/min, feed rate at 0.06mm/min and 0.99mm depth of cut. Multi objective NSGA-II optimization provides several non-dominated points on Pareto Front model that can be utilized as decision making for choice among objectives
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.