The last major review of progress toward a chemical retinal prosthesis was a decade ago. Many important advancements have been made since then with the aim of producing an implantable device for animal testing. We review that work here discussing the potential advantages a chemical retinal prosthesis may possess, the spatial and temporal resolutions it might provide, the materials from which an implant might be constructed and its likely effectiveness in stimulating the retina in a natural fashion. Consideration is also given to implant biocompatibility, excitotoxicity of dispensed glutamate and known changes to photoreceptor degenerate retinas.
The negative photoresist SU-8 has attracted much research interest as a structural material for creating complex three-dimensional (3D) microstructures incorporating hidden features such as microchannels and microwells for a variety of lab-on-a-chip and biomedical applications. Achieving desired topological and dimensional accuracy in such SU-8 microstructures is crucial for most applications, but existing methods for their metrology, such as scanning electron microscopy (SEM) and optical profilometry, are not practical for non-destructive measurement of hidden features. This paper introduces an alternative imaging modality for non-destructively characterizing the features and dimensions of SU-8 microstructures by measuring their transmittance of 365 nm ultraviolet (UV) light. Here, depth profiles of SU-8 3D microstructures and thin films are determined by relating UV transmittance and the thicknesses of SU-8 samples imaged in the UV spectrum through the Beer–Lambert law applied to the images on a pixel-by-pixel basis. This technique is validated by imaging the UV transmittance of several prototype SU-8 3D microstructures, including those comprising hidden hollow subsurface features, as well as SU-8 thin-films, and verifying the measured data through SEM. These results suggest that UV transmittance imaging offers a cost-effective, non-destructive technique to quickly measure and identify SU-8 microstructures with surface and hidden subsurface features unlike existing techniques.
Thin electroosmotic flow (EOF) micropumps can generate flow in confined spaces such as lab-on-a-chip microsystems and implantable drug delivery devices. However, status quo methods for quantifying flow and other important parameters in EOF micropumps depend on microfluidic interconnects or fluorescent particle tracking: methods that can be complex and error-prone. Here, we present a novel connected droplet shape analysis (CDSA) technique that simplifies flow rate and zeta potential quantification in thin EOF micropumps. We also show that a pair of droplets connected by an EOF pump can function as a tunable convex lens system (TCLS). We developed a biocompatible and all polymer EOF micropump with an SU-8 substrate and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. We microdrilled a channel through the electrode/SU-8/electrode layers to realize a monolithic EOF micropump. Then, we deposited a pinned droplet on each end of the microchannel so that it connected them. By controlling the EOF between the droplets and measuring the corresponding change in their shape, we quantified the nanoliter EOF rate and zeta potential at the interface of SU-8 with two liquids (deionized water and a L-glutamate neurotransmitter solution). When the droplet pair and pump were used as a TCLS, CDSA successfully predicted how the focal length would change when the pump drove fluid from one droplet to another. In summary, CDSA is a simple low-cost technique for EOF rate and zeta potential measurement, and a pair of droplets connected by an EOF micropump can function as a TCLS without any moving parts.
Sophisticated three-dimensional microstructures fabricated using the negative tone SU-8 photoresist are used in many biomedical and microfluidic applications. Scanning electron microscopy (SEM) and profilometry are commonly used metrological techniques for the dimensional characterization of fabricated SU-8 microstructures but are not viable for non-destructive measurements and characterization of subsurface features like hidden microchannels. In this study, we report a unique methodology for the non-destructive dimensional characterization of SU-8 microstructures using the emitted autofluorescence radiation from fabricated SU-8 microstructures to generate depth profiles. The relationship between autofluorescence emission intensities and the thicknesses of the microstructures measured using SEM was determined and used to characterize the dimensions of unknown SU-8 microstructures based on their autofluorescence intensities. Lateral dimensions were also measured. This relationship was used to create highly accurate depth profiles for different types of microstructures including hidden subsurface features. These results were validated by comparison with SEM. The results suggest a feasible and accurate non-destructive, low cost, metrological technique to characterize SU-8 surface and subsurface microstructures using autofluorescence emission intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.