Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
The synthetic retinoid N-(4-hydroxphenyl) retinamide (4HPR) has manifold actions, which may contribute to its chemopreventive effects on breast cancer cell growth and progression. A role for ceramide as a stress-response signal is investigated here during the cytotoxic action of 4HPR in MCF-7 cells. N-(4-hydroxphenyl) retinamide induced a dose-dependent decline in cell growth and survival associated with a maximal 10-fold increase in ceramide production at 10 mM. N-(4-hydroxphenyl) retinamide exhibited a greater potency than all-trans retinoic acid (ATRA) on growth inhibition and ceramide production. The synthetic peroxisome proliferator-activated receptors agonist troglitazone (TGZ), but not the native ligand 15-deoxy-delta 12,14-prostaglandin J 2 , abrogated both these actions of 4HPR but not that of ATRA. The antioxidant N-acetylcysteine mimicked the abrogative effect of TGZ on 4HPR action, while the exogenous oxidant H 2 O 2 also stimulated ceramide production. The inhibitors of de novo ceramide synthesis, fumonisin B 1 and myriocin, blocked the ceramide response to 4HPR and partially reversed the apoptotic response, but did not prevent the overall decline in cell survival. The pancaspase inhibitor Z-VAD fmk reduced the decrease in cell survival caused by 4HPR, but did not affect the ceramide response. These findings describe a novel redox-sensitive elevation of ceramide levels associated with the cytotoxic response of breast cancer cells to 4HPR. However, a major mediatory role for this sphingolipid in this context remains equivocal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.