Non-stationarities are ubiquitous in EEG signals. They are especially apparent in the use of EEG-based brain-computer interfaces (BCIs): (a) in the differences between the initial calibration measurement and the online operation of a BCI, or (b) caused by changes in the subject's brain processes during an experiment (e.g. due to fatigue, change of task involvement, etc). In this paper, we quantify for the first time such systematic evidence of statistical differences in data recorded during offline and online sessions. Furthermore, we propose novel techniques of investigating and visualizing data distributions, which are particularly useful for the analysis of (non-)stationarities. Our study shows that the brain signals used for control can change substantially from the offline calibration sessions to online control, and also within a single session. In addition to this general characterization of the signals, we propose several adaptive classification schemes and study their performance on data recorded during online experiments. An encouraging result of our study is that surprisingly simple adaptive methods in combination with an offline feature selection scheme can significantly increase BCI performance.
The dorsal anterior cingulate cortex (dACC) has been implicated in a variety of cognitive control functions, among them the monitoring of conflict, error, and volatility, error anticipation, reward learning, and reward prediction errors. In this work, we used a Bayesian ideal observer model, which predicts trial-by-trial probabilistic expectation of stop trials and response errors in the stop signal task, to differentiate these proposed functions quantitatively. We found that dACC hemodynamic response, as measured by functional magnetic resonance imaging, encodes both the absolute prediction error between stimulus expectation and outcome, and the signed prediction error related to response outcome. After accounting for these factors, dACC has no residual correlation with conflict or error likelihood in the stop-signal task. Consistent with recent monkey neural recording studies, and in contrast with other neuroimaging studies, our work demonstrates that dACC reports at least two different types of prediction errors, and beyond contexts that are limited to reward processing.
XML and other semi-structured data may have partially specified or missing schema information, motivating the use of a structural summary which can be automatically computed from the data. These summaries also serve as indices for evaluating the complex path expressions common to XML and semi-structured query languages. However, to answer all path queries accurately, summaries must encode information about long, seldom-queried paths, leading to increased size and complexity with little added value. We introduce the A(k)-indices, a family of approximate structural summaries. They are based on the concept of k-bisimilarity, in which nodes are grouped based on local structure, i.e., the incoming paths of length up to k. The parameter k thus smoothly varies the level of detail (and accuracy) of the A(k)-index. For small values of k, the size of the index is substantially reduced. While smaller, the A(k) index is approximate, and we describe techniques for efficiently extracting exact answers to regular path queries. Our experiments show that, for moderate values of k, path evaluation using the A(k)-index ranges from being very efficient for simple queries to competitive for most complex queries, while using significantly less space than comparable structures.
We describe a brain-computer interface for controlling a humanoid robot directly using brain signals obtained non-invasively from the scalp through electroencephalography (EEG). EEG has previously been used for tasks such as controlling a cursor and spelling a word, but it has been regarded as an unlikely candidate for more complex forms of control owing to its low signal-to-noise ratio. Here we show that by leveraging advances in robotics, an interface based on EEG can be used to command a partially autonomous humanoid robot to perform complex tasks such as walking to specific locations and picking up desired objects. Visual feedback from the robot's cameras allows the user to select arbitrary objects in the environment for pick-up and transport to chosen locations. Results from a study involving nine users indicate that a command for the robot can be selected from four possible choices in 5 s with 95% accuracy. Our results demonstrate that an EEG-based brain-computer interface can be used for sophisticated robotic interaction with the environment, involving not only navigation as in previous applications but also manipulation and transport of objects.
This paper presents a two-part study investigating the use of forearm surface electromyographic (EMG) signals for real-time control of a robotic arm. In the first part of the study, we explore and extend current classification-based paradigms for myoelectric control to obtain high accuracy (92-98%) on an eight-class offline classification problem, with up to 16 classifications/s. This offline study suggested that a high degree of control could be achieved with very little training time (under 10 min). The second part of this paper describes the design of an online control system for a robotic arm with 4 degrees of freedom. We evaluated the performance of the EMG-based real-time control system by comparing it with a keyboard-control baseline in a three-subject study for a variety of complex tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.