Fever is a readily measurable physiological response that has been used in medicine for centuries. However, the information provided has been greatly limited by a plain thresholding approach, overlooking the additional information provided by temporal variations and temperature values below such threshold that are also representative of the subject status. In this paper, we propose to utilize continuous body temperature time series of patients that developed a fever, in order to apply a method capable of diagnosing the specific underlying fever cause only by means of a pattern relative frequency analysis. This analysis was based on a recently proposed measure, Slope Entropy, applied to a variety of records coming from dengue and malaria patients, among other fever diseases. After an input parameter customization, a classification analysis of malaria and dengue records took place, quantified by the Matthews Correlation Coefficient. This classification yielded a high accuracy, with more than 90% of the records correctly labelled in some cases, demonstrating the feasibility of the approach proposed. This approach, after further studies, or combined with more measures such as Sample Entropy, is certainly very promising in becoming an early diagnosis tool based solely on body temperature temporal patterns, which is of great interest in the current Covid-19 pandemic scenario.
Diagnosis of undifferentiated fever is a major challenging task to the physician which often remains undiagnosed and delays the treatment. The aim of the study was to record and analyze a 24-hour continuous tympanic temperature and evaluate its utility in the diagnosis of undifferentiated fevers. This was an observational study conducted in the Kasturba Medical College and Hospitals, Mangaluru, India. A total of ninety-six (n = 96) patients were presented with undifferentiated fever. Their tympanic temperature was recorded continuously for 24 hours. Temperature data were preprocessed and various signal characteristic features were extracted and trained in classification machine learning algorithms using MATLAB software. The quadratic support vector machine algorithm yielded an overall accuracy of 71.9% in differentiating the fevers into four major categories, namely, tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases. The area under ROC curve for tuberculosis, intracellular bacterial infections, dengue fever, and noninfectious diseases was found to be 0.961, 0.801, 0.815, and 0.818, respectively. Good agreement was observed [kappa = 0.618 (p < 0.001, 95% CI (0.498–0.737))] between the actual diagnosis of cases and the quadratic support vector machine learning algorithm. The 24-hour continuous tympanic temperature recording with supervised machine learning algorithm appears to be a promising noninvasive and reliable diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.