Our results show that sparse coding is an effective way to define spectral features of the cardiac cycle and its sub-cycles for the purpose of classification. In addition, we demonstrate that sparse coding can be combined with additional feature extraction methods to improve classification accuracy.
With the recent COVID-19 pandemic, healthcare systems all over the world are struggling to manage the massive increase in emergency department (ED) visits. This has put an enormous demand on medical professionals. Increased wait times in the ED increases the risk of infection transmission. In this work we present an open-source, low cost, off-body system to assist in the automatic triage of patients in the ED based on widely available hardware. The system initially focuses on two symptoms of the infection -fever and cyanosis. The use of visible and far-infrared cameras allows for rapid assessment at a 1m distance, thus reducing the load on medical staff and lowering the risk of spreading the infection within hospitals. Its utility can be extended to a general clinical setting in non-emergency times as well to reduce wait time, channel the time and effort of healthcare professionals to more critical tasks and also prioritize severe cases.Our system consists of a Raspberry Pi 4, a Google Coral USB accelerator, a Raspberry Pi Camera v2 and a FLIR Lepton 3.5 Radiometry Long-Wave Infrared Camera with an associated IO module. Algorithms running in real-time detect the presence and body parts of individual(s) in view, and segments out the forehead and lip regions using PoseNet. The temperature of the forehead-eye area is estimated from the infrared camera image and cyanosis is assessed from the image of the lips in the visible spectrum. In our preliminary experiments, an accuracy of 97% was achieved for detecting fever and 77% for the detection of cyanosis, with a sensitivity of 91% and area under the receiver operating characteristic curve of 0.91. Heart rate and respiratory effort are also estimated from the visible camera.Although preliminary results are promising, we note that the entire system needs to be optimized before use and assessed for efficacy. The use of low-cost instrumentation will not produce temperature readings and identification of cyanosis that is acceptable in many situations. For this reason, we are releasing the full code stack and system design to allow others to rapidly iterate and improve the system. This may be of particular benefit in low-resource settings, and low-to-middle income countries in particular, which are just beginning to be affected by COVID-19.
We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.