The present investigation deals with the development of a novel polymer nanocomposite (PNCs) electrodes for simple, selective and sensitive detection of chlorpyrifos (CHL). PNCs were developed using surfactant facilitated polymerization of indole using different concentrations (wt%) of WC ranging 5-30. Formation of PNCs was ascertained through diversified analytical methods. Electrodes were derived from PNCs over stainless steel substrate for electrochemical quantification of CHL. With concentration of WC, the DC conductivity (10 −2 × S/cm) of electrodes was increased ranging 3.54-0.75 at 313 K. Electrochemical impedance spectroscopy reveals well stability of electrodes in phosphate buffer (PBS, 0.1 M) at pH 7.4. The performance of electrodes towards detection and quantification of CHL was investigated through square wave voltammetry. Study reveals that detection and quantification of CHL were dependent on concentration of WC in nanocomposites. Square wave voltammetry reveals that the electrode derived from PNCs with 5 wt% of WC has rendered highest limits of detection and quantification of CHL (10 −8 mol/L) up to 5.94 and 18. This work describes a viable method of preparation of synergistic blend of WC in PIN matrix having high electrical conductivity, rapid electron shift, huge surface area and enhanced stability for fast and précised electrochemical detection of CHL.
A microwave (MW) assisted process was evolved to synthesize a series of polymer nanocomposites (PNCs) through 2,2-azobisisobutyronitrile (AIBN) initiated free radical in situ polymerization of acrylonitrile (AN) in presence of nanobariumtitanate (NBT). The reaction conditions were optimized and microwave power ranging 25 to 100 W over 10 min was found to be most suited for the synthesis of PNCs. Synthesis of PNCs has been ascertained through UV–vis, FTIR spectroscopy and microstructure were investigated through XRD and AFM. TG-DTA-DTG proclaims that PNCs acquire lower moisture content and higher heat resistance as compared to polyacrylonitrile (PAN). The synthesized PNCs have been applied as sensing material to develop electrochemical probe for detection of doxorubicin (DOX). The presence of DOX (0.01%, w/v) in phosphate buffer at pH 7.4 has shown a remarkable increase in the peak current at PNCs modified glassy carbon electrode (GCE). Cyclic voltammetric (CV) studies proof good acceptance of nanocomposites as sensing material for anti cancerous drug DOX.
We have reviewed recent progress on various types of humidity sensors as it is one of the most significant issues in various areas of sensing appliances such as instrumentation, charge storage automated systems, industries and agriculture. Various effective approaches have been discussed to develop ceramic, semiconducting and polymer based graphite sensors. It was found that graphite based nanocomposite materials have unique potential for detecting humidity due to specific structure, high electrothermal conductivities, good mechanical properties, low cost and ultrahigh surface area that increases applications in the field of energy storage devices.
Electrochemical biosensors (EBS) have recently gained much attention in the field of health care for the management of cholesterol (CHO). This review comprises a report on the modification of electrode surfaces with metal nanoparticles (MNP) for selective and sensitive sensing of CHO. Quantitative analysis of cholesterol is carried out with the use of the amperometric data of linear calibration plot. A good synergistic between MNP of working electrode (WE) and CHO give fast electron transfer and précised electrochemical detection of CHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.