As TiO2 is suitable for electronic and electrical applications, in the present work the authors have successfully modified TiO2 by adding silver (Ag) to form titanium oxide-silver oxide (TiO2:Ag2O) nanocomposite samples by using sol-gel technique. Characterizations of these composites have been performed using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV-Vis spectroscopy. XRD study revealed that the crystal structure of the samples consisted of tetragonal and cubic phases. This study further showed an increment in the average crystallite size from 8 nm to 38 nm with an increase in Ag concentration. The increase in crystallite size has been confirmed additionally by SEM and AFM. The increment in the average particle size of the samples may be attributed to an increase in silver molarity in the TiO2 matrix. Significant red shift in the absorption edge has been observed, causing reduction in the energy bandgap of the composites from 3.89 eV to 3.46 eV with an increase in particle size which is evident from UV-Vis spectroscopic studies. This wide-band gap properties of the TiO2:Ag2O nanocomposite make it suitable for memory-storage devices and dielectric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.