High-frequency (50 Hz) observational data from the 200-m tower data (Reese Technology Center, Texas) have been prescribed as inflow conditions into the NREL FAST code in order to evaluate the structural impacts of Low Level Jets (LLJs) on a typical commercial wind turbine. A vertical region of interest for the analysis of interaction LLJ–wind turbine has been delimited, and the LLJ length scales have been calculated. The analysis of power spectra exhibited a deviation within the inertial subrange from the classical −5/3 slope in a log-log representation towards a lower slope, which indicated a lower rate of energy transfer when the LLJ was present. It has been observed that during a LLJ event the turbulence intensity and turbulence kinetic energy were significantly lower than those during unstable conditions; and cyclical aerodynamic loads on the turbine blades produced a negative impact on the wind turbine, mainly due to the enhanced wind shear. Dominant frequencies present in the power spectra of the incoming wind were also observed in frequencies related to the dynamic loads of the turbines. It was found that the wind turbine can mimic the signals from the approaching inlet flow, although some of the replication can be altered or annulled in a wind farm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.