In this paper we review THz radiation properties, generation methods, and antenna configurations. This paper suggests some new class of antennas that can be used at THz frequency, like optical antennas or Carbon nanotube antennas. THz technology has become attractive due to the low energy content and nonionizing nature of the signal. This property makes them suitable for imaging and sensing applications. But at the same time detection and generation of THz signals has been technologically challenging. This paper presents a comparative study of the generation techniques for THz frequency signals giving emphasis to the some new techniques like Quantum Cascade lasers which has created significant research interest. The main aim for this study is to find out the materials suitable for fabricating THz devices and antennas, a suitable method for generation of high power at THz frequency and an antenna that will make THz communication possible.
The influence of self-heating on the millimeter-wave (mm-wave) and terahertz (THz) performance of double-drift region (DDR) impact avalanche transit time (IMPATT) sources based on silicon (Si) has been investigated in this paper. The dependences of static and large-signal parameters on junction temperature are estimated using a non-sinusoidal voltage excited (NSVE) large-signal simulation technique developed by the authors, which is based on the quantum-corrected drift-diffusion (QCDD) model. Linear variations of static parameters and non-linear variations of large-signal parameters with temperature have been observed. Analytical expressions representing the temperature dependences of static and large-signal parameters of the diodes are developed using linear and 2nd degree polynomial curve fitting techniques, which will be highly useful for optimizing the thermal design of the oscillators. Finally, the simulated results are found to be in close agreement with the experimentally measured data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.