This study is on photocatalytic degradation of pharmaceutical residues of atenolol (ATL) and acetaminophen (ACT) present in secondary effluent under visible light irradiation stimulated by Ag doped ZnO (Ag-ZnO) photocatalyst.
Lawsonia inermis
leaf extract was used for reduction of Zinc sulphate to ZnO nanoparticles (NPs). Further, ZnO NPs were doped with Ag and characterized by XRD, FT-IR, SEM-EDX, surface area analyzer, UV-Vis, and photoluminescence spectrometry to analyze the structure, morphology, chemical composition, and optical property. FT-IR analysis revealed major functional groups such as OH, C=O, and SEM analysis depicted the polyhedron shape of the NPs with size range of 100 nm. Ag-ZnO NPs were used in the photocatalytic degradation of ATL and ACT, and its removal was evaluated by varying initial contaminant concentration, catalyst dosage, and initial pH. Findings indicate that Ag-ZnO NPs demonstrated relative narrow bandgap and efficient charge separation that resulted in enhanced photocatalytic activity under visible light illumination. The photocatalytic degradation of ATL and ACT fitted well with pseudo-first-order kinetic model. Further, it was found that under optimal conditions of 5 mg/L of contaminants, pH of 8.5, and catalyst dose of 1 g/L, degradation efficiency of 70.2% (ATL) and 90.8% (ACT) was achieved for a reaction time of 120 min. More than 60% reduction in TOC was observed for both contaminants and OH• pathway was found to be the major removal process. Ag-ZnO photocatalyst showed good recycling performance, and these findings indicate that it could be cost effectively employed for removing emerging contaminants under visible light radiation.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-13532-2.
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern and have been detected worldwide in water bodies in trace concentrations. Most of these emerging contaminants are not regulated in water quality standards except a few in the developed countries. In the case of developing countries, research in this direction is at a nascent stage. For the effective management of Pharmaceutical contaminants (PC) in developing countries, the relevance of PCs as an emerging contaminant has to be analyzed followed by regular monitoring of the environment. Considering the resource constraints, this could be accomplished by identifying the priority compounds which is again region specific and dependent on consumption behavior and pattern. In this work, relevance of pharmaceutical compound as emerging contaminant in water for a developing country like India is examined by considering the data pertaining to pharmaceutical consumption data. To identify the critical Pharmaceutical Contaminants to be monitored in the Indian environment, priority compounds from selected prioritization methods were screened with the compounds listed in National List of Essential Medicine (NLEM), India. Further, information on the number of publications on the compound as an emerging contaminant, data on monitoring studies in India and the number of brands marketing the compound in India were also analyzed. It is found that out of 195 compounds from different prioritization techniques, only 77 compounds were found relevant to India based on NLEM sorting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.