The super-speed tube transport (SSTT) system, which enables high-speed transportation in a partially vacuumed tube by minimizing the air resistance, is drawing attention as a next-generation transportation system. To evaluate the applicability of concrete as a material for the system, the effect of cracks on the airtightness of the system needs to be considered. This study aims to establish an analytical relationship between the cracks induced on a concrete tube structure and the system airtightness. An analytical model for the leakage rate through the concrete cracks is first applied to establish a differential equation, which can help determine the air flow rate into the concrete tube structure through the cracks. A mathematical formula for predicting the internal pressure changes over time in the concrete tube structure is then derived. The effect of crack development on the system airtightness is assessed through parametric analysis and a crack index for describing the extent of crack development is proposed by investigating the correlation with the system airtightness. Finally, assuming that the cracks due to external loadings are closely related to the displacement, the correlation between displacements and the airtightness of concrete tube structures is demonstrated through a set of experimental tests. As a result, the necessity of crack analysis for evaluation of the airtightness performance is emphasized.
Background: Tick-borne protozoan parasites (TBPPs) cause significant problems for domestic animals’ health in Nepal. TBPPs are routinely diagnosed by labor-intensive blood smear microscopy. In Nepal, there are some reports of Babesia and Theileria in cattle, although species identification is rarely performed. Therefore, we performed conventional nested PCR (nPCR) followed by sequence analysis to identify TBPP species infecting cattle in Nepal. Methods: One hundred and six blood samples were collected from cattle in the Kathmandu Valley. Thin blood smears were prepared for microscopic examination. Parasite DNA was extracted from the blood, and nPCR and sequencing were performed to identify the TBPPs present. Results: Among the 106 samples, 45 (42.5%) were positive for piroplasm (Babesia spp. and Theileria spp.) via microscope observation and 56 (52.8%) samples were positive via nPCR. The obtained PCR products were used for direct sequencing, and we identified the species as B. bigemina, B. bovis, T. annulate and T. orientalis. Phylogenetic analyses showed that the B. bovis, B. bigemina and T. orientalis sequences from this study belonged to each species clade. On the other hand, T. annulate was divided into two clades in the analysis, and our T. annulate sequences were also divided in these two clades. The piroplasm-positive cattle showed lower hemoglobin and red blood cells than healthy cattle. Conclusions: To the best of our knowledge, this study is the first to apply molecular detection and species determination of TBPPs in cattle in Nepal. The results of this study may be used as a starting point for the development of successful TBPP surveillance and prevention programs in Nepal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.