This study reports the therapeutic effectiveness of doxorubicin-conjugated zinc oxide nanoparticles against lung cancer cell line. The zinc oxide nanoparticles (ZnONPs) were first synthesised using a fungus, isolated from air with an extraordinary capability to survive in very high concentrations of zinc salt. Molecular analysis based on 18S rRNA gene sequencing led to its identification as Aspergillus niger with the NCBI accession no. OL636020. The fungus was found to produce ZnONPs via the reduction of zinc ions from zinc sulphate. The ZnONPs were characterised by various biophysical techniques. ZnONPs were further bioconjugated with the anti-cancer drug doxorubicin (DOX), which was further confirmed by different physical techniques. Furthermore, we examined the cytotoxic efficacy of Doxorubicin-bioconjugated-ZnONPs (DOX-ZnONPs) against lung cancer A549 cells in comparison to ZnONPs and DOX alone. The cytotoxicity caused due to ZnONPs, DOX and DOX-ZnONPs in lung cancer A549 cells was assessed by MTT assay. DOX-ZnONPs strongly inhibited the proliferation of A549 with IC50 value of 0.34 μg/mL, which is lower than IC50 of DOX alone (0.56 μg/mL). Moreover, DOX-ZnONPs treated cells also showed increased nuclear condensation, enhanced ROS generation in cytosol and reduced mitochondrial membrane potential. To investigate the induction of apoptosis, caspase-3 activity was measured in all the treated groups. Conclusively, results of our study have established that DOX-ZnONPs have strong therapeutic efficacy to inhibit the growth of lung cancer cells in comparison to DOX alone. Our study also offers substantial evidence for the biogenically synthesised zinc oxide nanoparticle as a promising candidate for a drug delivery system.
In the field of biomedicine, the green synthesis of Zinc Oxide Nanoparticles (ZnONPs) utilising plant extracts has piqued interest. The reduction nature of herbal extracts has recently aided in the production of spherical ZnONPs of various potentials from zinc salt. In this study, fresh leaf (aqueous) extracts of <em>Cannabis sativa</em> were used as reducing and stabilising agents in a rapid, environmentally friendly approach for the synthesis of ZnONPs. UV–VIS and Fourier transform infrared spectroscopy, as well as transmission electron microscopy, were used to analyse the biosynthesized CNS-ZnONPs (TEM). The antibacterial and antibiofilm properties of produced CNS-ZnONPs were also studied in vitro. The presence of a prominent absorption peak at 380 nm, which corresponds to the CNSZnONPs’ Surface Plasmon Resonance (SPR) band, indicated the creation of CNS-ZnONPs. The produced CNS-ZnONPs were spherical in shape, with an average particle size of 16.25 nm, according to TEM examination. The synthesised CNS-ZnONPs also showed significant antibacterial activity against a variety of Gram-positive and Gram-negative microorganisms. Furthermore, the biosynthesized CNSZnONPs significantly reduced biofilm formation. <em>Cannabis sativa</em> leaf extracts may be utilised to easily synthesise ZnONPs, which can be employed as a natural source of antibacterial and antibiofilm agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.