Conservation of wide‐ranging species and their movement is a major challenge in an increasingly fragmented world. Long‐distance movement, such as dispersal, is a key factor for the persistence of population, enabling the movement of animals within and between populations. Here, we describe one of the longest dispersal journeys by a sub‐adult male tiger (Panthera tigris) through GPS telemetry in Central India. We analyzed movement metrics, directionality, and space use during three behavioral stages of dispersal. We also used the clustering method to identify resting and kill sites (n = 89). T1‐C1 dispersed a straight‐line distance of 315 km over 225 days, moving an average of 8.38 km/day and covering a cumulative displacement of ~3000 km. Movement rate during post‐dispersal was faster (mean = 0.47 km/h) than during dispersal (mean = 0.38 km/h) and pre‐dispersal (mean = 0.13 km/h), respectively. The overall movement rate during the night (0.44 km/h) was significantly faster than during the day (0.21 km/h). Likewise, during dispersal, the movement was faster (mean = 0.52 km/h) at night than day (0.24 km/h). The average size of clusters, signifying resting and kill sites, was 1.68 ha and primarily away from human habitation (mean = 1.89 km). The individual crossed roads faster (mean = 2.00 km/h) than it traveled during other times. During the post‐dispersal phase, T1‐C1 had a space use of 319.48 km2 (95% dBBMM) in the Dnyanganga Wildlife Sanctuary. The dispersal event highlights the long‐distance and multiscale movement behavior in a heterogeneous landscape. Moreover, small forest patches play a key role in maintaining large carnivore connectivity while dispersing through a human‐dominated landscape. Our study underlines how documenting the long‐distance movement and integrating it with modern technology can improve conservation management decisions.
Conservation of wide-ranging species is a challenge owing to their movement in an increasingly fragmented world. Long-distance dispersal has significant implications for ecosystem functioning, and such movement becomes challenging while navigating through a heterogeneous and human-dominated landscape. Here, we describe one of the longest dispersal journey by a sub-adult male tiger through GPS telemetry in Central India. We analyzed movement metrics, directionality, and space use during three behavioural stages of dispersal. We also used the clustering method to identify resting and kill sites (n = 89). T1-C1 dispersed a straight-line distance of 315 km over 225 days, moving an average 8.4 km/day and covering a cumulative displacement of~̵̴ 3000 km. Movement during post-dispersal was higher (mean = 465.6 m/h) than those during dispersal (mean = 376.6 m/h) and pre-dispersal (mean = 132.2 m/h), respectively. Moreover, movement during the night was significantly faster than during the day in all three phases. Likewise, during dispersal, the movement was faster (mean = 518.2 m/h) and more directional (knight = 0.19) at night than day. The average size of clusters was 1.68 ha and primarily away from human habitation (mean = 1875.6 m). The mean cluster duration (46.31 hr) was higher in the non-forested area but was smaller in size than inside the forest (p< 0.05). The individual crossed roads faster (mean= 1880.9 m/hr) than it travelled during other times. During the post-dispersal phase, T1-C1 established its home range with an area of 319.48 sq. km. (95% dBBMM). The dispersal event highlights the long-distance and multiscale movement behaviour in a heterogeneous landscape. Moreover, small forest patches play a key role in maintaining large carnivore connectivity while dispersing through a human-dominated landscape. Our study underlines how documenting the long-distance movement and integrating it with modern technology can improve conservation management decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.