The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in ‘omic’ technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Multiple myeloma (MM) is a common and deadly cancer of blood plasma cells. A unique feature of MM is the extremely low somatic mutation rate of the p53 tumor suppressor gene, in sharp contrast with about half of all human cancers where this gene is frequently mutated. Eleven miRNAs have been reported to repress p53 through direct interaction with the 3' untranslated region. The expression of nine of them is higher in MM plasma cells than in healthy donor counterparts, suggesting that miRNA overexpression is responsible for p53 inactivation in MM. Here, we report that the environmental carcinogen benzo[a]pyrene (BaP) upregulated the expression of seven p53-targeting miRNAs (miR-25, miR-15a, miR-16, miR-92, miR-125b, miR-141, and miR-200a), while 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD) upregulated two of them (miR-25 and miR-92) in MM cells. The miR-25 promoter was activated by both BaP and TCDD, and this response was mediated by the aryl hydrocarbon receptor (AhR). We screened 727 compounds that inhibit MM cell survival and down-regulate the expression of p53-targeting miRNAs. We found that (-)-epigallocatechin-3-gallate (EGCG), a constituent of green tea and a major component of the botanical drug Polyphenon® E, reduced the expression of four p53-targeting miRNAs, including miR-25, miR-92, miR-141, and miR-200a. Collectively, these data implicate polycyclic aromatic hydrocarbons and AhR in the regulation of p53-targeting miRNAs in MM and identify a potential therapeutic and preventive agent to combat this deadly disease.
The major anthocyanin compositions of the two black scented rice cultivars (Chakhao Poireiton and Chakhao Amubi) were studied using HPLC. Four main anthocyanins, i.e., delphinidin 3-galactoside, delphinidin 3-arabinoside, cyanidin 3-galactoside and cyanidin 3-glucoside were identified in Chakhao Poireiton while three main anthocyanins, delphinidin 3-galactoside, delphinidin 3-arabinoside and cyanidin 3-galactoside were identified in Chakhao Amubi. In both the cultivars, delphinidin 3-galactoside is the most predominant anthocyanin. The total monomeric anthocyanin content and total phenolics were measured using a modified pH differential method and modified Folin-Ciocalteu method, respectively. The total anthocyanin content in Chakhao Poireiton was found to be 740 mg/kg and Chakhao Amubi was 692 mg cyanidin 3-glucoside/kg of dried powder sample. And the total phenolic content was 577 and 500 mg/100 g of the dried powder sample as Gallic acid equivalent in Chakhao Poireiton and Chakhao Amubi, respectively. The anthocyanin extract showed strong antioxidant activity by DPPH assay, the highest scavenging activity of Chakhao Poireiton and Chakhao Amubi were 70.28 % and 69.73 %, respectively. From the study it can be suggested that supplementation of the black scented rice in the diet will have a great impact on human health. The rich anthocyanin and phenolic help to protect the plant from rice diseases and pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.