Poultry birds are asymptomatic reservoir of Salmonella Typhimurium (S. Typhimurium) but act as source of human infection for this bacterium. Inside the poultry, S. Typhimurium experiences several stresses, 42°C body temperature of birds is one of them. Proteins are highly susceptible to temperature mediated damage. Conversion of protein bound aspartate (Asp) residues to iso-aspartate (iso-Asp) is one of such modifications that occur at elevated temperature. Iso-Asp formation has been linked to protein inactivation and compromised cellular survival. Protein-L-isoaspartyl methyltransferase (PIMT) can repair iso-Asp back to Asp, thus enhances the cellular survival at elevated temperature. Here, we show that the pimt gene deletion strain of S. Typhimurium (Δpimt mutant strain) is hypersensitive to 42°C in vitro. The hypersusceptibility of Δpimt strain is partially reversed by plasmid based complementation (trans-complementation) of Δpimt strain. Following oral inoculation, Δpimt strain showed defective colonization in poultry caecum, and compromised dissemination to spleen and liver. Interestingly, we have observed three and half folds induction of the PIMT protein following exposure of S. Typhimurium to 42°C. Our data suggest a novel role of pimt gene in the survival of S. Typhimurium at elevated temperature and virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.