Lysine acetylation is a prevalent posttranslational modification that acts as a regulator of protein function, subcellular localization, and interactions. A growing body of work has highlighted the importance of temporal alterations in protein acetylation during infection with a range of human viruses. It has become clear that both cellular and viral proteins are decorated by lysine acetylations, and that these modifications contribute to core host defense and virus replication processes. Further defining the extent and dynamics of protein acetylation events during the progression of an infection can provide an important new perspective on the intricate mechanisms underlying the biology and pathogenesis of virus infections. Here, we provide protocols for identifying, quantifying, and probing the regulation of lysine acetylations during viral infection. We describe the use of acetyl-lysine immunoaffinity purification and quantitative mass spectrometry for assessing the cellular acetylome at different stages of an infection. As an alternative to traditional antibody-mediated western blotting, we discuss the benefits of targeted mass spectrometry approaches for detecting and quantifying site-specific acetylations on proteins of interest. Specifically, we provide a protocol using parallel reaction monitoring (PRM). We further discuss experimental considerations that are specific to studying viral infections. Finally, we provide a brief overview of the types of assays that can be employed to characterize the function of an acetylation event in the context of infection. As a method to interrogate the regulation of acetylation, we describe the Fluor de Lys assay for monitoring the enzymatic activities of deacetylases.
The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.