Hollow microneedles are an emerging technology for delivering drugs and therapeutics, such as vaccines and insulin, into the skin. Although the benefits of intradermal drug delivery have been known for decades, our understanding of fluid absorption by skin tissue has been limited due to the difficulties in imaging a highly scattering biological material such as skin. Here, we report the first real-time imaging of skin tissue at the microscale during intradermal injections through hollow microneedles, using optical coherence tomography. We show that skin tissue behaves like a deformable porous medium and absorbs fluid by locally expanding rather than rupturing to form a single fluid filled cavity. We measure the strain distribution in a cross section of the tissue to quantify local tissue deformation, and find that the amount of volumetric expansion of the tissue corresponds closely to the volume of fluid injected. Mechanically restricting tissue expansion limits fluid absorption into the tissue. Our experimental findings can provide insights to optimize the delivery of drugs into skin for different therapeutic applications, and to better model fluid flow into biological tissue.
One of the most common health care procedures is injecting fluids, in the form of drugs and vaccines, into our bodies, and hollow microneedles are emerging medical devices that deliver such fluids into the skin. Fluid injection into the skin through microneedles is advantageous because of improved patient compliance and the dose sparing effect for vaccines. Since skin tissue is a deformable porous medium, injecting fluid into the skin involves a coupled interaction between the injected fluid flow and the deformation of the soft porous matrix of skin tissue. Here, we introduce a semiempirical model that describes the fluid transport through skin tissue based on experimental data and constitutive equations of flow through biological tissue. Our model assumes that fluid flows radially outward and tissue deformation varies spherically from the microneedle tip. The permeability of tissue, assumed to be initially homogeneous, varies as a function of volumetric strain in the tissue based on a two-parameter exponential relationship. The model is optimized to extract two macroscopic parameters, k0 and m, for each of the seven experiments on excised porcine skin, using a radial form of Darcy’s law, the two-parameter exponential dependence of permeability on strain, and the experimental data on fluid flow recorded by a flow sensor and tissue deformation captured in real time using optical coherence tomography. The fluid flow estimated by the permeability model with optimized macroscopic parameters matches closely with the recorded flow rate, thus validating our semiempirical model.
Abstract:The design of any physical product involves prototyping. Building physical prototypes of the products can be expensive and time consuming. An alternate to physical prototyping is haptic virtual prototyping, which simulates the product using a computer and a haptic device. A haptic device is one that produces the forces similar to that of the product, giving the user a realistic feel of the product. Since the feel of a product plays a significant role in its commercial success, the importance of haptic virtual prototyping as a design tool is increasing. This paper discusses the haptic simulation of a push button on a low cost and commercially available haptic device called Novint Falcon. Two different models were created -the first one was a simple push button, and the second was an on/off click button. The parameters of the two models were selected such that they have the most accurate tactile response or feel of the product. The two models successfully simulated the feel of the buttons, and it was found that haptic virtual prototyping of buttons is achievable using a low cost haptic interaction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.