Background. There is lack of data on feasibility and safety of kidney transplants from living donors who recovered from COVID-19. Methods. Here, we present a retrospective cohort study of 31 kidney transplant recipients (KTR) from living donors who recovered from polymerase chain reaction confirmed COVID-19 across 19 transplant centers in India from July 3, 2020, to December 5, 2020. We detailed demographics, clinical manifestations, immunosuppression regimen, treatment, and outcomes. Donors with a previous diagnosis of COVID-19 were accepted after documenting 2 negative polymerase chain reaction tests with complete symptom resolution for at least 28 days and significant social distancing for 14 days before surgery. Results. COVID-19 clinical severity in donors ranged from completely asymptomatic (71%, n = 22) to mild infection (29%, n = 9). None progressed to moderate or severe stages of the disease in the entire clinical course of home treatment. Patient and graft survival was 100%, respectively, with acute cellular rejection being reported in 6.4% (n = 2) recipient. All recipients and donors were asymptomatic with normal creatinine at median follow-up of 44 days after surgery without any complications relating to surgery and COVID-19. Conclusions. Our data support safety of proceeding with living donation for asymptomatic individuals with comprehensive donor, recipients screening before surgery, using a combination of clinical, radiologic, and laboratory criteria. It could provide new insights into the management of KTR from living donors who have recovered from COVID-19 in India. To the best of our knowledge, this remains the largest cohort of KTR from living donors who recovered from COVID-19.
Acute kidney injury (AKI) in critically ill children is frequently a component of the multiple organ failure syndrome. It occurs within the framework of the severe catabolic phase determined by critical illness and is intensified by metabolic derangements. Nutritional support is a must for these children to improve outcomes. Meeting the special nutritional needs of these children often requires nutritional supplementation by either the enteral or the parenteral route. Since critically ill children with AKI comprise a heterogeneous group of subjects with varying nutrient needs, nutritional requirements should be frequently reassessed, individualized and carefully integrated with renal replacement therapy. This article is a state-of-the-art review of nutrition in critically ill children with AKI.
Objectives: We investigated the association of fluid overload and oxygenation in critically sick children, and their correlation with various outcomes (duration of ventilation, ICU stay, and mortality). We also assessed whether renal angina index (RAI) at admission can predict mortality or acute kidney injury (AKI) on day 3 after admission.Design and setting: Prospective study, pediatric intensive care in a tertiary hospital.Duration: June 2013-June 2014.Patients: Patients were included if they needed invasive mechanical ventilation for >24 h and had an indwelling arterial catheter. Patients with congenital heart disease or those who received renal replacement therapy (RRT) were excluded.Methods: Oxygenation index, fluid overload percent (daily, cumulative), RAI at admission and pediatric logistic organ dysfunction (PELOD) score were obtained in all critically ill children. KDIGO classification was used to define AKI, using both creatinine and urine output criteria. Admission data for determination of RAI included the use of vasopressors, invasive mechanical ventilation, percent fluid overload, and change in kidney function (estimated creatinine clearance). Univariable and multivariable approaches were used to assess the relations between fluid overload, oxygenation index and clinical outcomes. An RAI cutoff >8 was used to predict AKI on day 3 of admission and mortality.Results: One hundred and two patients were recruited. Fluid overload predicted oxygenation index in all patients, independent of age, gender and PELOD score (p < 0.05). Fluid overload was associated with longer duration of ventilation (p < 0.05), controlled for age, gender, and PELOD score. Day-3 AKI rates were higher in patients with a RAI of 8 or more, and higher areas under the RAI curve had better prediction rates for Day-3 AKI. An RAI <8 had high negative predictive values (80–95%) for Day-3 AKI. RAI was better than traditional markers of pediatric severity of illness (PELOD) score for prediction of AKI on day 3.Conclusions: This study emphasizes that positive fluid balance adversely affects intensive care in critically ill children. Further, the RAI prediction model may help optimize treatment and improve clinical prediction of AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.