A novel core-shell microcapsule system is developed in this study to mimic the miniaturized 3D architecture of pre-hatching embryos with an aqueous liquid core of embryonic cells and a hydrogel-shell of zona pellucida. This is done by microfabricating a non-planar microfluidic flow-focusing device that enables one-step generation of microcapsules with an alginate hydrogel shell and an aqueous liquid core of cells from two aqueous fluids. Mouse embryonic stem (ES) cells encapsulated in the liquid core are found to survive well (> 92 %). Moreover, ~ 20 ES cells in the core can proliferate to form a single ES cell aggregate in each microcapsule within 7 days while at least a few hundred cells are usually needed by the commonly used hanging-drop method to form an embryoid body (EB) in each hanging drop. Quantitative RT-PCR analyses show significantly higher expression of pluripotency marker genes in the 3D aggregated ES cells compared to the cells under 2D culture. The aggregated ES cells can be efficiently differentiated into beating cardiomyocytes using a small molecule (cardiogenol C) without complex combination of multiple growth factors. Taken together, the novel 3D microfluidic and pre-hatching embryo-like microcapsule systems are of importance to facilitate in vitro culture of pluripotent stem cells for their ever-increasing use in modern cell-based medicine.
Multidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate, to specifically produce reactive oxygen species (ROS) in mitochondria under near-infrared (NIR) laser irradiation. The ROS can oxidize the NADH into NAD+ to reduce the amount of ATP available for the efflux pumps. The treatment with LSC nanoparticles and NIR laser irradiation also reduces the expression and increases the intracellular distribution of the efflux pumps. Consequently, multidrug-resistant cancer cells lose their multidrug resistance capability for at least 5 days, creating a therapeutic window for chemotherapy. Our in vivo data show that the drug-laden LSC nanoparticles in combination with NIR laser treatment can effectively inhibit the growth of multidrug-resistant tumors with no evident systemic toxicity.
Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.
Development of high-fidelity 3D models to recapitulate the tumor microenvironment is essential for studying tumor biology and discovering anticancer drugs. Here we report a method to engineer the 3D microenvironment of human tumor, by encapsulating cancer cells in the core of microcapsules with a hydrogel shell for miniaturized 3D culture to obtain avascular microtumors first. The microtumors are then used as the building blocks for assembling with endothelial cells and other stromal cells to create macroscale 3D vascularized tumor. Cells in the engineered 3D microenvironment can yield significantly larger tumors in vivo than 2D-cultured cancer cells. Furthermore, the 3D vascularized tumors are 4.7 and 139.5 times more resistant to doxorubicin hydrochloride (a commonly used chemotherapy drug) than avascular microtumors and 2D-cultured cancer cells, respectively. Moreover, this high drug resistance of the 3D vascularized tumors can be overcome by using nanoparticle-mediated drug delivery. The high-fidelity 3D tumor model may be valuable for studying the effect of microenvironment on tumor progression, invasion, and metastasis, and for developing effective therapeutic strategy to fight against cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.