The rationale for this study came from observing grazing dairy cattle dropping freshly harvested plant material onto the soil surface, hereafter called litter-fall. The Intergovernmental Panel on Climate Change (IPCC) guidelines include NO emissions during pasture renewal but do not consider NO emissions that may result from litter-fall. The objectives of this study were to determine litter-fall rates and to assess indicative NO emission factors (EFs) for the dominant pasture species (perennial ryegrass [ L.] and white clover [ L.]). Herbage was vacuumed from intensively managed dairy pastures before and after 30 different grazing events when cows (84 cows ha) grazed for 24 h according to a rotational system; the interval between grazing events ranged from 21 to 30 d. A laboratory incubation study was performed to assess potential EF values for the pasture species at two soil moisture contents. Finely ground pasture material was incubated under controlled laboratory conditions with soil, and the NO emissions were measured until rates returned to control levels. On average, pre- and postgrazing dry matter yields per grazing event were 2516 ± 636 and 1167 ± 265 kg DM ha (±SD), respectively. Pregrazing litter was absent, whereas postgrazing fresh and senesced litter-fall rates were 53 ± 24 and 19 ± 18 kg DM ha, respectively. Annually, the rotational grazing system resulted in 12 grazing events where fresh litter-fall equaed to 16 kg N ha yr to the soil. Emission factors in the laboratory experiment indicated that the EF for perennial ryegrass and white clover ranged from 0.7 to 3.1%. If such EF values should also occur under field conditions, then we estimate that litter-fall induces an NO emission rate of 0.3 kg NO ha yr. Litter-fall as a source of NO in grazed pastures requires further assessment.
During pasture grazing, freshly harvested herbage (litterfall) is dropped onto soils from the mouths of dairy cattle, potentially inducing nitrous oxide (N 2 O) emissions. Although the Intergovernmental Panel on Climate Change (IPCC) recommends accounting for N 2 O emissions from arable crop residues in national inventories, emissions from the litterfall of grazed pasture systems are not recognized. Th e objective of this study was to investigate the potential of litterfall to contribute to N 2 O emissions in a fi eld study located on a pasture site in Canterbury, New Zealand (43°38.50′ S, 172°27.17′ E). We applied O likely resulted from ammonifi cation followed by a coupling of nitrifi cation and denitrifi cation during litter decomposition on the soil surface. Th e emission factor of the litter deposited in situ was 1.2 ± 0.2%, which is not substantially greater than the IPCC default emission factor value of 1% for crop residues. Further in situ studies using diff erent pasture species and litterfall rates are required to understand the microbial processes responsible for litter-induced N 2 O emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.