A new process for the production of instant red jasmine rice was investigated using fluidized bed drying with the aid of swirling compressed air. Drying characteristics were evaluated using the operating parameters of fluidizing air temperature (90–120 °C) and pressure of swirling compressed air (4–6 bar). Appropriate air pressure was determined based on the highest value of model parameters from the semi-empirical Page equation and effective diffusivity. Influences of supply time of swirling compressed air (2–10 min) and drying temperature of 90–120 °C were investigated and optimized based on the quality attributes using response surface methodology. Drying at 120 °C and compressed air pressure of 6 bar gave the highest rate constant and effective diffusion coefficient. Drying at 120 °C combined with injecting swirling air for 2 min was the most suitable approach, while drying at 90 °C and supplying compressed air for 10 min was the best choice to preserve antioxidant properties. Air temperature of 98.5 °C with 2 min supply of swirling compressed air suitably provided high physical and rehydration properties and retained high health benefits of antioxidant compounds. Finally, after rehydration in warm water at 70 °C for 10 min, the textural properties of the rehydrated rice sample were comparable to conventionally cooked rice.
Since seeds are the foundation of agriculture and the Thai government plans to make Thailand an export hub of seeds under the Asean Economic Community (AEC) 2015, seed quality plays an important role in the seed production. Traditionally, physical attributes of seeds are inspected by human. However this method is very time-consuming and it highly relies on human skills and experience. Thus, in this paper, we focus on seed quality inspection of sweet pepper seeds using image processing techniques. Sweet peppers are very interesting since they have been one of the most important vegetable around the world and they have a variety of vitamins and nutrients. To identify defective sweet pepper seeds, two features used in our proposed algorithm are seed color and seed size. As shown in the results, percent accuracy of abnormal seed color and unaccepted seed size detection are 95.82% and 90.76%, respectively.
Stepwise drying is an effective technique that promotes energy saving without additional capital cost. The stepwise drying mode was investigated for energy consumption and dried product qualities using a coupled heat and mass transfer model associated with kinetics equations of volume shrinkage and degradation of β-carotene in carrot cubes. Simulations were performed using a finite element method with extension of a chemical species transport. Validation experiments were carried out under constant drying modes at 60 °C, 70 °C and 80 °C using a lab-scale convective hot air dryer. The verified models were subsequently employed to investigate the effects of two step-up drying modes (60 to 70 °C and 60 to −80 °C). The optimal drying condition was determined using the synthetic evaluation index (SI) with criteria of high specific moisture evaporation rate (SMER), low shrinkage ratio and β-carotene degradation. Simulated results showed comparable agreement with experimental data of moisture content, shrinkage ratio and β-carotene ratio. Step-up drying of 60 to 70 °C gave the highest SMER of 0.50 × 10−3 kg of water evaporated per kWh, while the operation at constant temperature of 80°C gave the lowest value of 0.19 × 10−3 kg of water evaporated per kWh. Model-predicted results showed less shrinkage of carrot cubes, but higher degradation of β-carotene under step-up drying compared to single-stage drying under temperature of 60 °C. Based on the highest SI value (0.36), carrot cubes were optimally dried under step-up mode of 60 to 70 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.