The impact of replacing three polyether polyols with different levels of a single palm olein‐based natural oil polyol (NOP) was systematically correlated with the changes in foaming reactivity, cell structure, physico‐mechanical properties, and morphology of viscoelastic (VE) foams. The data show that replacing the polyether polyols with the NOP slightly increased the rate of the foaming reactivity. Increasing the NOP content resulted in increased cell size and cells remained fully open. Increased NOP content contributed to higher load bearing properties of VE foam, which can be attributed to higher functionality of NOP compared to polyether polyols. Addition of the NOP slightly increased the resilience of the foams, however, the hysteresis which is the measure of energy absorption remained mostly unaffected. Age properties, characterized by dry and humid compression sets, were mostly unaffected by the replacement of the polyether polyol with the NOP. The addition of NOP did not impact the morphology of the VE foam polymer matrix, which appears to retain a low degree of hard and soft segment domain separation. Overall, the results demonstrate a feasibility that the NOP can be used to partially replace the polyether polyols in VE polyurethane foams without significant impact on the functional performance.
β-Lactam antibiotics have been used for many years to treat bacterial infections. However the effective treatment of an increasing range of microbial infections is threatened by bacterial resistance to β-lactams: the prolonged, widespread (and at times reckless) use of these drugs has spawned widespread resistance, which renders them ineffective against many bacterial strains. The cyclobutanone ring system is isosteric with β-lactam: in cyclobutanone analogues, the eponymous cyclic amide is replaced with an all-carbon ring, the amide N is substituted by a tertiary C-H α to a ketone. Cyclobutanone analogues of various β-lactam antibiotics have been investigated over the last 35 years, initially as prospective antibiotics in their own right and inhibitors of the β-lactamase enzymes that impart resistance to β-lactams. More recently they have been tested as inhibitors of other serine proteases and as mechanistic probes of β-lactam biosynthesis. Cyclobutanone analogues of the penam ring system are the first reversible inhibitors with moderate activity against all classes of β-lactamase; other compounds from this family inhibit Streptomyces R61 dd-carboxypeptidase/transpeptidase, human neutrophil elastase and porcine pancreatic elastase. But has their potential as enzyme inhibitors been fully exploited? Challenges in synthesising diversely functionalised cyclobutanone derivatives mean that only a limited number have been made (with limited structural diversity) and evaluated. This review surveys the different synthetic approaches that have been taken to these compounds, the investigations made to evaluate their biological activity and prospects for future developments in this area.
Coupling picolinic acid (pyridine-2-carboxylic acid) and pyridine-2,6-dicarboxylic acid with N-alkylanilines affords a range of mono- and bis-amides in good to moderate yields. These amides are of interest for potential applications in catalysis, coordination chemistry and molecular devices. The reaction of picolinic acid with thionyl chloride to generate the acid chloride in situ leads not only to the N-alkyl-N-phenylpicolinamides as expected but also the corresponding 4-chloro-N-alkyl-N-phenylpicolinamides in the one pot. The two products are readily separated by column chromatography. Chlorinated products are not observed from the corresponding reactions of pyridine-2,6-dicarboxylic acid. X-Ray crystal structures for six of these compounds are described. These structures reveal a general preference for cis amide geometry in which the aromatic groups (N-phenyl and pyridyl) are cis to each other and the pyridine nitrogen anti to the carbonyl oxygen. Variable temperature 1H NMR experiments provide a window on amide bond isomerisation in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.