The present investigation is undertaken to study the performance of an existing stage of an industrial centrifugal compressor with a vaneless diffuser and is aimed at improving the efficiency of the compressor stage through the use of a low-solidity (LSD) vaned diffuser. The experiments were conducted at a tip Mach number of 0.35. The LSD vane is formed from a standard aerofoil profile with marginal modification in the trailing edge region. The study was conducted at a solidity ratio of 0.81, which is considered as the optimum for the chosen stage. The overall stage performance for different diffuser vane setting angles was evaluated in terms of flow coefficient, head coefficient, polytropic efficiency and static pressure recovery coefficient. The performance parameters are normalized with respect to those of the vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD vanes as compared with a vaneless diffuser configuration. Variation in blade loading was studied from measurements of static pressure on the pressure and suction surfaces of LSD vanes at different vane setting angles. It was observed that the vane setting angle has a significant effect on stage performance and also on the blade loading.
Diffusers are found to play a significant role in the performance of centrifugal compressors. Extensive studies have been in progress in various research laboratories for improvement of performance with various types of diffusers. One such effort for study of performance of a centrifugal compressor stage with Low Solidity Diffuser (LSD) vanes is presented in this paper. The study was conducted at a tip mach number of 0.35. An exclusive test rig was set up for carrying out these flow studies. The LSD vane is formed using standard NACA profile with marginal modification at the trailing edge region. The study encompasses the variation of setting angle of the LSD vane and the vane solidity. The effect of solidity and the setting angle on overall stage performance is evaluated in terms of flow coefficient, head coefficient and efficiency normalised with respect to these parameters for the case of vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD as compared to vaneless diffuser configuration. It is concluded from these studies that there is an optimum solidity and stagger angle for the given stage with LSD vanes for the chosen configuration.
No abstract
No abstract
Numerical simulation of impeller and low solidity vaned diffuser (LSD) of a centrifugal compressor stage is performed individually using CFX- BladeGen and BladeGenPlus codes. The tip mach number for the chosen study was 0.35. The same configuration was used for experimental investigation for a comparative study. The LSD vane is formed using standard NACA profile with marginal modification at trailing edge. The performance parameters obtained form numerical studies at the exit of impeller and the diffuser have been compared with the corresponding experimental data. These parameters are pressure ratio, polytropic efficiency and flow angle at the impeller exit where as the parameters those have been compared at the exit of diffuser are the static pressure recovery coefficient and the exit flow angle. In addition, the numerical prediction of the blade loading in terms of blade surface pressure distribution on LSD vane has been compared with the corresponding experimental results. Static pressure recovery coefficient and flow angle at diffuser exit is seen to match closely at higher flows. The difference at lower flows could be due to the effect of interaction between impeller and diffuser combinations, as the numerical analysis was done separately for impeller and diffuser and the effect of impeller diffuser interaction was not considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.