BackgroundSalinity is a major environmental factor limiting productivity of crop plants including rice in which wide range of natural variability exists. Although recent evidences implicate epigenetic mechanisms for modulating the gene expression in plants under environmental stresses, epigenetic changes and their functional consequences under salinity stress in rice are underexplored. DNA methylation is one of the epigenetic mechanisms regulating gene expression in plant’s responses to environmental stresses. Better understanding of epigenetic regulation of plant growth and response to environmental stresses may create novel heritable variation for crop improvement.Methodology/Principal FindingsMethylation sensitive amplification polymorphism (MSAP) technique was used to assess the effect of salt stress on extent and patterns of DNA methylation in four genotypes of rice differing in the degree of salinity tolerance. Overall, the amount of DNA methylation was more in shoot compared to root and the contribution of fully methylated loci was always more than hemi-methylated loci. Sequencing of ten randomly selected MSAP fragments indicated gene-body specific DNA methylation of retrotransposons, stress responsive genes, and chromatin modification genes, distributed on different rice chromosomes. Bisulphite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied with genotypes and tissue types irrespective of the level of salinity tolerance of rice genotypes.Conclusions/SignificanceThe gene body methylation may have an important role in regulating gene expression in organ and genotype specific manner under salinity stress. Association between salt tolerance and methylation changes observed in some cases suggested that many methylation changes are not “directed”. The natural genetic variation for salt tolerance observed in rice germplasm may be independent of the extent and pattern of DNA methylation which may have been induced by abiotic stress followed by accumulation through the natural selection process.
Drought resistance is of enormous importance in crop production. The identification of genetic factors involved in plant response to drought stress provides a strong foundation for improving drought tolerance. Stay-green is a drought resistance trait in sorghum (Sorghum bicolor L. Moench) that gives plants resistance to premature senescence under severe soil moisture stress during the post-flowering stage. The objective of this study was to map quantitative trait loci (QTLs) that control the stay-green and chlorophyll content in sorghum. By using a restriction fragment length polymorphism (RFLP) map, developed from a recombinant inbred line (RIL) population, we identified four stay-green QTLs, located on three linkage groups. The QTLs (Stg1 and Stg2) are on linkage group A, with the other two, Stg3 and Stg4, on linkage groups D and J, respectively. Two stay-green QTLs, Stg1 and Stg2, explaining 13-20% and 20-30% of the phenotypic variability, respectively, were consistently identified in all trials at different locations in two years. Three QTLs for chlorophyll content (Chl1, Chl2, and Chl3), explaining 25-30% of the phenotypic variability were also identified under post-flowering drought stress. All coincided with the three stay-green QTL regions (Stg1, Stg2, and Stg3) accounting for 46% of the phenotypic variation. The Stg1 and Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins, and an abscisic acid (ABA) responsive gene. Such spatial arrangement shows that linkage group A is important for drought- and heat-stress tolerance and yield production in sorghum. High-resolution mapping and cloning of the consistent stay-green QTLs may help to develop drought-resistant hybrids and to understand the mechanism of drought-induced senescence in plants.
Drought resistance is of enormous importance in crop production. The identification of genetic factors involved in plant response to drought stress provides a strong foundation for improving drought tolerance. Stay-green is a drought resistance trait in sorghum (Sorghum bicolor L. Moench) that gives plants resistance to premature senescence under severe soil moisture stress during the post-flowering stage. The objective of this study was to map quantitative trait loci (QTLs) that control the stay-green and chlorophyll content in sorghum. By using a restriction fragment length polymorphism (RFLP) map, developed from a recombinant inbred line (RIL) population, we identified four stay-green QTLs, located on three linkage groups. The QTLs (Stg1 and Stg2) are on linkage group A, with the other two, Stg3 and Stg4, on linkage groups D and J, respectively. Two stay-green QTLs, Stg1 and Stg2, explaining 13-20% and 20-30% of the phenotypic variability, respectively, were consistently identified in all trials at different locations in two years. Three QTLs for chlorophyll content (Chl1, Chl2, and Chl3), explaining 25-30% of the phenotypic variability were also identified under post-flowering drought stress. All coincided with the three stay-green QTL regions (Stg1, Stg2, and Stg3) accounting for 46% of the phenotypic variation. The Stg1 and Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins, and an abscisic acid (ABA) responsive gene. Such spatial arrangement shows that linkage group A is important for drought- and heat-stress tolerance and yield production in sorghum. High-resolution mapping and cloning of the consistent stay-green QTLs may help to develop drought-resistant hybrids and to understand the mechanism of drought-induced senescence in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.