Among patients in a trauma registry who were hypotensive on arrival in the ED and had major injuries isolated to the abdomen requiring emergency laparotomy, the probability of death showed a relationship to both the extent of hypotension and the length of time in the ED for patients who were in the ED for 90 minutes or less. The probability of death increased approximately 1% for each 3 minutes in the ED.
This paper extends the framework of partially observable Markov decision processes (POMDPs) to multi-agent settings by incorporating the notion of agent models into the state space. Agents maintain beliefs over physical states of the environment and over models of other agents, and they use Bayesian updates to maintain their beliefs over time. The solutions map belief states to actions. Models of other agents may include their belief states and are related to agent types considered in games of incomplete information. We express the agents' autonomy by postulating that their models are not directly manipulable or observable by other agents. We show that important properties of POMDPs, such as convergence of value iteration, the rate of convergence, and piece-wise linearity and convexity of the value functions carry over to our framework. Our approach complements a more traditional approach to interactive settings which uses Nash equilibria as a solution paradigm. We seek to avoid some of the drawbacks of equilibria which may be non-unique and do not capture off-equilibrium behaviors. We do so at the cost of having to represent, process and continuously revise models of other agents. Since the agent's beliefs may be arbitrarily nested, the optimal solutions to decision making problems are only asymptotically computable. However, approximate belief updates and approximately optimal plans are computable. We illustrate our framework using a simple application domain, and we show examples of belief updates and value functions.
We develop new graphical representations for the problem of sequential decision making in partially observable multiagent environments, as formalized by interactive partially observable Markov decision processes (I-POMDPs). The graphical models called interactive inf uence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to explicitly model the structure that is often present in real-world problems by decomposing the situation into chance and decision variables, and the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as graphical representations of POMDPs, to multiagent settings in the same way that IPOMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief as the agent acts and observes in a setting that is populated by other interacting agents. Using several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their usefulness. We also show how the models may be solved using the standard algorithms that are applicable to DIDs.Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents. The space of models grows exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents' candidate models at each time step to a constant. We do this by clustering models that are likely to be behaviorally equivalent and selecting a representative set from the clusters. We discuss the error bound of the approximation technique and demonstrate its empirical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.