We describe a simple method for bone engineering using biodegradable scaffolds with mesenchymal stem cells derived from human induced-pluripotent stem cells (hiPS-MSCs). The hiPS-MSCs expressed mesenchymal markers (CD90, CD73, and CD105), possessed multipotency characterized by tri-lineages differentiation: osteogenic, adipogenic, and chondrogenic, and lost pluripotency – as seen with the loss of markers OCT3/4 and TRA-1-81 – and tumorigenicity. However, these iPS-MSCs are still positive for marker NANOG. We further explored the osteogenic potential of the hiPS-MSCs in synthetic polymer polycaprolactone (PCL) scaffolds or PCL scaffolds functionalized with natural polymer hyaluronan and ceramic TCP (PHT) both in vitro and in vivo. Our results showed that these iPS-MSCs are functionally compatible with the two 3D scaffolds tested and formed typically calcified structure in the scaffolds. Overall, our results suggest the iPS-MSCs derived by this simple method retain fully osteogenic function and provide a new solution towards personalized orthopedic therapy in the future.
Comparative studies have been carried out among solid-state chitosan soliquoid, chitosan acetic acid physiological saline solution, and carboxymethyl chitosan physiological saline solution to discover the hemostatic effect of molecular weight (M(w)) and deacetylation degree (DA) of chitosan. It was found that solid-state chitosan and chitosan acetic acid physiological saline solution performed different hemostatic mechanisms. When blood mixed with chitosan acetic acid physiological saline solution, the erythrocytes aggregated and were deformed. The DA, especially a low DA, in the chitosan acetic acid physiological saline solution, had a significant effect on the unusual aggregation and deformation of erythrocytes, compared with the effect of M(w) within a range between 10(5) and 10(6). However, this phenomenon could not be observed in solid-state chitosan soliquoid. Solid-state chitosan with a low DA absorbed more platelets and was more hemostatic. Carboxymethyl chitosan physiological saline solution had nothing to do with the aggregation and deformation of erythrocytes but caused local rouleau. The values of thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen concentration (FIB) were measured after the blood was mixed with solid-state chitosan soliquoid, chitosan acetic acid physiological saline solution, and carboxymethyl chitosan physiological saline solution, separately. The results demonstrated that coagulation factors might not be activated by them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.