Indigenous plant use-systems have evolved under, and constantly adapted to human and non-human impacts. In the last decades however, increasing socioeconomic and cultural transformations, including land-use change, outmigration, globalized markets, the introduction of new species, and climate change have led to a decreasing availability of indigenous resources, and are ultimately leading to a reduction of local use-knowledge. Participant observations, discussions, walks-in-the-woods, semi-structured interviews and informal meetings were carried out in 12 villages of far western Nepal between 2011 and 2015 to assess how sociocultural changes have affected the sustenance of indigenous systems and local biodiversity, when compared to studies carried out in the previous decades. Our findings show that there were no statistically significant differences in subject variable means, but differences were relatively important to plant parts-use and plant growth-forms (p = 0.183 and 0.088 respectively). Cissampelos pareira, Acorus calamus, Calotropis gigantea were found to have the greatest relative importance, whereas Ageratina adenophora, Melia azedarach, Carum carvi were most important based on use values. Among them, C. pareira and A. adenophora were introduced. The spatial distribution of species collected for medicine showed that all habitats were important for collection however, habitats close to villages were more favored. The use of non-indigenous and easily available species and more accessible habitats is becoming more prevalent as primary forests become increasingly overexploited, indigenous species become limited, and sociocultural cause of land use change expand. The utilization of indigenous and non-indigenous species and nearby habitats, although possibly affecting the quality of medicinal species, nonetheless reveals the dynamism of indigenous medicines as an adaptive asset mitigating human and non-human environmental changes.
Soil C sequestration through enhanced land use is a good strategy to mitigate the increasing concentration of atmospheric CO2. A study was conducted in Chhatiwan VDC of Makawanpur District to compare soil organic carbon (SOC) stocks of four main land use types such as forest, degraded forest, Khet and Bari land. Stratified random sampling method was used for collecting soil samples. Organic carbon content was determined by Walkley and Black method. Total SOC stock of different types of land followed the order: as Forest (110.0 t ha-1) > Bari (96.5 t ha-1) > Khet (86.8 t ha-1) > Degraded land (72.0 t ha-1). The SOC% declined with soil depths. The SOC% at 0–20 cm depth was highest (1.26 %) that recorded in the forest soils and lowest (0.37%) at 80- 100cm depth in degraded forest land. Thus, the SOC stock varied with land use systems and soil depths. The study suggests a need for appropriate land use strategy and sustainable soil management practices to improve SOC stock. SAARC J. Agri., 16(2): 13-23 (2018)
Roxb., commonly known as rosewood, is one of the highly valuable tropical timber species of Nepal. The tree species was widely distributed in the past, however, over-exploitation of natural habitat, deforestation, forest conversion for agriculture, illegal logging and the invasion of alien species resulted in the classification of this species as vulnerable by the IUCN (International Union for Conservation of Nature) category. So, the prediction of habitat suitability and potential distribution of the species is required to develop restoration mechanisms and conservation interventions. In this study, we modelled the suitable habitat of over the entire possible range of Nepal using a Maxent model. We compiled 23 environmental variables (19 bioclimatic, 3 topographic and a vegetative layer), however, only 12 least correlated variables along with 43 spatially representative presence locations were retained for model prediction. We used a receiver operating characteristic (ROC) curve to assess the modelâs performance and a Jackknife procedure to evaluate the relative importance of predictor variables. The model was statistically significant with an area under the curve (AUC) value of 0.969. The internal Jackknife test indicated that elevation was the most important variable for the model prediction with 71.3% contribution followed by mean temperature of driest quarter (9.8%). The most (>0.6) suitable habitat for the was 235â484 hectares with large sections of area in two provinces whereas, the western most provinces were not suitable for as per Maxent model. The information presented here can provide a framework for nature conservation planning, monitoring and habitat management of this rare and endangered species.Dalbergia latifoliaD. latifoliaD. latifoliaD. latifolia
Background: Global emergence of carbapenem-resistant Klebsiella pneumoniae is a major public health concern. Phage therapy – application of lytic phage to kill pathogenic bacteria – is considered as one of the promising alternatives to tackle this antibiotic crisis in recent days. This study aimed to isolate, characterize and evaluate therapeutic efficacy of a novel K. pneumoniae phage in mouse model.Methods: A novel lytic bacteriophage (phage) Kp_Pokalde_002 was isolated against carbapenem-resistant K. pneumoniae (Kp56) and characterized. Safety parameters of the phage were evaluated by bioinformatic analysis of its genome. A lethal dose (~1×107 CFU/mouse) of Kp56 was determined and administrated in the mice. The infected mice were treated with phage Kp_Pokalde_002 at a multiplicity of infection (MOI) 1.0 (~1×107 PFU/mouse) via both oral and intraperitoneal (IP) routes.Results: Isolated phage comprised an icosahedral capsid with a short tail. Based on genome analysis, the phage was strictly lytic belonging the Podoviridae family (T7-like viruses) and free from any virulent and antibiotic-resistant genes. The phage was stable up to 60 °C for 30 minutes and effective between pH 4 to 11 (optimum pH 9). The phage exhibited a short latent period (20 minutes) with burst size of 121 phage particles per infected cell. The infected mice were rescued with the phage therapy via both oral and IP route. Significant reduction of bacterial load (3-7 log10 CFU/ml) in the blood and lung was observed in the treatment group.Conclusions: We provide an evidence of successful phage therapy against carbapenem-resistant K. pneumoniae infected mouse model using locally isolated lytic phage.Keywords: Bacteriophage; klebsiella pneumonia; phage therapy
Climate change is the global concern of our sustainable development whose impact is of great concern to humanity. In Nepal, we are already starting to become aware of recent changes and developing the mechanism to adapt. A study was carried out in Bramha Thakur Community Forest User Group of Makawanpur district with an objective of assessing and prioritizing adaptation options by local community using soil and water conservation measures on climate change. Primary data were collected from direct observation, focus group discussion, key informant interview, preference ranking and transect walk. Meteorological data on temperature and rainfall of 30 years was collected from government sources and climatic trend was analyzed. Prioritization of adaptation options was done using Index of Usefulness of Practices to Adaptation (IUPA) tool developed by Debels et al. (2010). Monthly maximum value of daily maximum temperature and minimum temperature has increased by 0.0461°C and 0.12°C respectively. Numbers of warm days are increasing. Annual precipitation has increased steadily whereas maximum five days and monthly precipitation trend is increasing at high rate, alarming to hazards induced by climate change. Local people were found very resourceful in using various adaptation practices to deal with impacts of climate change. IUPA scoring provided important rankings on the adaptation options. Conservation pond was highly prioritized for drought management. To adapt with flood, engineering structures with or without vegetation were highly used as adaptation option. Bamboo plantation was highly preferred by local community to reduce the impacts of landslide and to prevent its occurrence. Bioengineering structures are highly recommended for long term stability in flooded and landslide affected areas. Further studies on adaptation options and their prioritization in more areas are recommended for comprehensive database and generalization. DOI: http://dx.doi.org/10.3126/jowe.v6i0.6997 J Wet Eco 2012 (6): 44-51
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.