A strategy to overcome the unsatisfying catalytic performance and the durability of monometallic iron‐based materials for the electrochemical oxygen evolution reaction (OER) is provided by heterobimetallic iron–metal systems. Monometallic Fe catalysts show limited performance mostly due to poor conductivity and stability. Here, by taking advantage of the structurally ordered and highly conducting FeSn2 nanostructure, for the first time, an intermetallic iron material is employed as an efficient anode for the alkaline OER, overall water‐splitting, and also for selective oxygenation of organic substrates. The electrophoretically deposited FeSn2 on nickel foam (NF) and fluorine‐doped tin oxide (FTO) electrodes displays remarkable OER activity and durability with substantially low overpotentials of 197 and 273 mV at 10 mA cm−2, respectively, which outperform most of the benchmarking NiFe‐based catalysts. The resulting superior activity is attributed to the in situ generation of α‐FeO(OH)@FeSn2 where α‐FeO(OH) acts as the active site while FeSn2 remains the conductive core. When the FeSn2 anode is coupled with a Pt cathode for overall alkaline water‐splitting, a reduced cell potential (1.53 V) is attained outperforming that of noble metal‐based catalysts. FeSn2 is further applied as an anode to produce value‐added products through selective oxygenation reactions of organic substrates.
An unprecedented one‐pot fully electrochemically driven Wittig olefination reaction system without employing a chemical reductant or sacrificial electrode material to regenerate triphenylphosphine (TPP) from triphenylphosphine oxide (TPPO) and base‐free in situ formation of Wittig ylides, is reported. Starting from TPPO, the initial step of the phosphoryl P=O bond activation proceeds through alkylation with RX (R=Me, Et; X=OSO2CF3 (OTf)), affording the corresponding [Ph3POR]+X− salts which undergo efficient electroreduction to TPP in the presence of a substoichiometric amount of the Sc(OTf)3 Lewis acid on a Ag‐electrode. Subsequent alkylation of TPP affords Ph3PR+ which enables a facile and efficient electrochemical in situ formation of the corresponding Wittig ylide under base‐free condition and their direct use for the olefination of various carbonyl compounds. The mechanism and, in particular, the intriguing role of Sc3+ as mediator in the TPPO electroreduction been uncovered by density functional theory calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.