BackgroundThe symptoms, radiography, biochemistry and healthcare utilisation of patients with COVID-19 following discharge from hospital have not been well described.MethodsRetrospective analysis of 401 adult patients attending a clinic following an index hospital admission or emergency department attendance with COVID-19. Regression models were used to assess the association between characteristics and persistent abnormal chest radiographs or breathlessness.Results75.1% of patients were symptomatic at a median of 53 days post discharge and 72 days after symptom onset and chest radiographs were abnormal in 47.4%. Symptoms and radiographic abnormalities were similar in PCR-positive and PCR-negative patients. Severity of COVID-19 was significantly associated with persistent radiographic abnormalities and breathlessness. 18.5% of patients had unscheduled healthcare visits in the 30 days post discharge.ConclusionsPatients with COVID-19 experience persistent symptoms and abnormal blood biomarkers with a gradual resolution of radiological abnormalities over time. These findings can inform patients and clinicians about expected recovery times and plan services for follow-up of patients with COVID-19.
Obstructive sleep apnoea (OSA) describes the pathological narrowing and collapse of the upper airway in recurrent episodes during sleep. This can result in a variety of symptoms that markedly affect quality of life. In addition, other chronic complications, most significantly the development of long‐term cardiovascular disease, are increasingly becoming recognised.
Importance: The stratification of indeterminate lung nodules is a growing problem, but the burden of lung nodules on healthcare services is not well-described. Manual service evaluation and research cohort curation can be time-consuming and potentially improved by automation.Objective: To automate lung nodule identification in a tertiary cancer centre.Methods: This retrospective cohort study used Electronic Healthcare Records to identify CT reports generated between 31st October 2011 and 24th July 2020. A structured query language/natural language processing tool was developed to classify reports according to lung nodule status. Performance was externally validated. Sentences were used to train machine-learning classifiers to predict concerning nodule features in 2,000 patients.Results: 14,586 patients with lung nodules were identified. The cancer types most commonly associated with lung nodules were lung (39%), neuro-endocrine (38%), skin (35%), colorectal (33%) and sarcoma (33%). Lung nodule patients had a greater proportion of metastatic diagnoses (45 vs. 23%, p < 0.001), a higher mean post-baseline scan number (6.56 vs. 1.93, p < 0.001), and a shorter mean scan interval (4.1 vs. 5.9 months, p < 0.001) than those without nodules. Inter-observer agreement for sentence classification was 0.94 internally and 0.98 externally. Sensitivity and specificity for nodule identification were 93 and 99% internally, and 100 and 100% at external validation, respectively. A linear-support vector machine model predicted concerning sentence features with 94% accuracy.Conclusion: We have developed and validated an accurate tool for automated lung nodule identification that is valuable for service evaluation and research data acquisition.
In response to the first COVID-19 surge in 2020, secondary care outpatient services were rapidly reconfigured to provide specialist review for disease sequelae. At our institution, comprising hospitals across three sites in London, we initially implemented a COVID-19 follow-up pathway that was in line with expert opinion at the time but more intensive than initial clinical guidelines suggested. We retrospectively evaluated the resource requirements for this service, which supported 526 patients from April 2020 to October 2020. At the 6-week review, 193/403 (47.9%) patients reported persistent Authors: A specialty trainee in respiratory medicine and general internal medicine,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.