Creep has been known and studied for textile materials for decades. In comparison, a newly observed phenomenon of inverse creep seems not to have received much attention. A new instrument has been fabricated to measure creep and inverse creep in textile materials particularly yarns. Creep and Inverse creep measurements of nylon multifilament yarn, polyester multifilament yarn, cotton and wool yarn at different levels of stress have been studied using the new instrument and results are reported in the present paper. 43
Abstract-Nanocrystalline ZrO 2 (Zirconia) has been synthesized by a conventional precipitation method.The structural, morphological, microstructural, optical and gas-sensing properties of ZrO 2 were investigated by using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and static gas sensing unit, respectively. X-ray diffraction pattern and TEM of the synthesized product reveal their nano-crystalline nature with grain size 18 nm and 20 nm, respectively. Gas sensing properties of their thick films, which were fabricated by screen-printing to various gases (O 2 , NO 2 , C 2 H 5 OH, CO, CO 2 , NH 3 , LPG, H 2 S and H 2 ) were tested in ambient air. The ZrO 2 thick films showed a high response and selectivity to H 2 S gas. The effect of operating temperature, gas concentration on the sensing characteristics of these films towards H 2 S was discussed..
Creep and Inverse creep are the important fundamental properties of textile materials. These properties determine the relaxation behavior of the product. We have designed and fabricated an instrument which can measure the creep and inverse creep. The instrument consists of a Trans - Receiver unit interfaced with Embedded System along with the Personal Computer. Existing technique for measuring inverse creep does not measure the instantaneous extension or contraction. The newly fabricated instrument, can measure the instantaneous extension and contraction of the yarn of an accuracy of 0.02%. This can be measured after every 500 µs. The position of the yarn, which is to be hanged, is vertical. The ‘Electronic Timer Unit’, replaces a meter scale. Set up is improved by using electronic utilities. The capability is enhanced to next level of time and distance resolutions. Automation enables to have flexibility of time from microseconds to minutes. Data is stored in different text files. Different samples of Nylon multifilament yarn were used in the experiment. The length and the load were altered. Change in stress lead to instantaneous extension or contraction followed by creep or inverse creep. This can sensed by the sensor and further stored in the memory of the Computer. The percentage creep and inverse creep were measured and have been reported in this present paper. Your paper should be in the same format as this file. The abstract goes here. Your abstract should be a maximum of 200 words here clearly outlining the contribution of your paper. Abstract is in italic fonts.
From decades Creep has been known and studied for textile materials. In comparison, a newly observed phenomenon of inverse creep seems not to have received much attention. A new instrument has been fabricated to measure creep and inverse creep in textile materials particularly yarns. Creep and Inverse creep measurements of few of the textile yarns like nylon multifilament yarn, Polyester multifilament yarn, Cotton and wool yarn at different levels of stress have been studied, using the new instrument along with Transreceiver, embedded system and Personal computer the automation is achieved and results are reported in the present paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.