Self-assembly/self-aggregation of surfactant molecules in bulk and the vicinity of a surface has been a topic of interest for decades because of its utilization in numerous modern technical applications. In this article, the results of molecular dynamics simulations are reported to investigate the self-aggregation of sodium dodecyl sulfate (SDS) at an interface of mica and water. SDS molecules starting from lower to higher surface concentrations tend to create distinct aggregated structures in the vicinity of a mica surface. The structural properties, such as density profiles, radial distribution functions, and thermodynamic properties like excess entropy and second virial coefficient, are calculated to address the bits and pieces of the self-aggregation. The change in the free energy for aggregates of varied sizes approaching the surface from the bulk aqueous solution, along with the change in their shapes during the process in terms of change in the radius of gyration and its components, is reported respectively to model a generic pathway for a surfactant-based targeted delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.