We are reporting a novel azo-azomethine ligand, HL and its complexes with Cu(II) and Fe(III) ions. The ligand and its complexes are characterized by various physico-chemical techniques using C,H,N analyses, FT-IR, 1H-NMR, ESI-MS and UV-Vis studies. TGA analyses reveal complexes are sufficiently stable and undergo two-step degradation processes. The redox behavior of the complexes was evaluated by cyclic voltammetry. Furthermore, the ligand and its complexes were tested for antimicrobial activity against bacterial and fungal strains by determining inhibition zone, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The complexes showed moderate antimicrobial activity when tested against Gram +ve and Gram −ve bacterial strains. To obtain insights into the structure of ligand, DFT studies are recorded. The results obtained are quite close to the experimental results. In addition, the energy gap, chemical hardness, softness, electronegativity, electrophilic index and chemical potential were calculated using HOMO, LUMO energy value of ligand.
Six new complexes of Zn(II), Cd(II) and Hg(II) with sulphur containing ligand, tetraethylthiuram disulphide in 2:2 and 1:4 ratio have been synthesized. The resulting complexes have been characterized on the basis of molar conductance measurement, elemental analyses, FT-IR, 1 H-NMR, and FAB/ESI-mass studies. The complexes were used as a single-source precursor for the synthesis of ZnS/CdS/HgS nanoparticles by their thermal decomposition in the presence of different surfactants. The precursor:surfactant ratio and temperature play an important role in determining the size of the nanoparticles. The size and morphology of nanoparticles have been ascertained by ultra violet-visible spectroscopy, X-ray diffraction measurements and transmission electron microscopy. Schiff bases, complexes and nanoparticles were tested for antibacterial activity and minimum inhibitory concentration values against Escherichia coli. The complexes were found more potent than the corresponding Schiff bases and nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.