Primary cicatricial or scarring alopecias (CA) are a group of inflammatory hair disorders of unknown pathogenesis characterized by the permanent destruction of the hair follicle. The current treatment options are ineffective in controlling disease progression largely because the molecular basis for CA is not understood. Microarray analysis of the lymphocytic CA, Lichen planopilaris (LPP), compared to normal scalp biopsies identified decreased expression of genes required for lipid metabolism and peroxisome biogenesis. Immunohistochemical analysis showed progressive loss of peroxisomes, proinflammatory lipid accumulation, and infiltration of inflammatory cells followed by destruction of the pilosebaceous unit. The expression of peroxisome proliferator-activated receptor (PPAR) γ, a transcription factor that regulates these processes, is significantly decreased in LPP. Specific agonists of PPARγ are effective in inducing peroxisomal and lipid metabolic gene expression in human keratinocytes. Finally, targeted deletion of PPARγ in follicular stem cells in mice causes a skin and hair phenotype that emulates scarring alopecia. These studies suggest that PPARγ is crucial for healthy pilosebaceous units and it is the loss of this function that triggers the pathogenesis of LPP. We propose that PPARγ-targeted therapy may represent a new strategy in the treatment of these disorders.
Chromosome 11p15 has attracted considerable attention because of the biological importance of this region to human disease. Apart from being an important tumor suppressor locus showing loss of heterozygosity (LOH) in several adult and childhood cancers, 11p15 has been shown by linkage analysis to harbor the gene(s) for the Beckwith-Wiedemann syndrome. Furthermore, the clustering of known imprinted genes in the 11p15.5 region suggests that the target gene may also be imprinted. However, positional cloning efforts to identify the target genes have been complicated by the large size (approximately 10 Mb) and complexity of LOH at 11p15. Here, we have analyzed 94 matched normal and breast tumor samples using 17 polymorphic markers that map to 11p15.5-15.4. We have defined precisely the location of a breast tumor suppressor gene between the markers D11S1318 and D11S4088 (approximately 500 kb) within 11p15.5. LOH at this region occurred in approximately 35-45% of breast tumors analyzed. In addition, we have fine-mapped a second, critical region of LOH, that spans the markers D11S1338-D11S1323 (approximately 336 kb) at 11p15.5-p15.4, that is lost in approximately 55-60% of breast tumors. There is a striking correlation between the loss of the two 11p loci and the clinical and histopathological features of breast tumors. LOH at region 1 correlated significantly (P = 0.016) with early events in malignancy and invasiveness. In contrast, the loss of the more proximal region 2, is highly predictive (P = 0.012) of aggressive metastatic disease. Thus, two distinct tumor suppressor loci on chromosome 11p15 may contribute to tumor progression and metastasis in breast cancer. The fine mapping of this intriguing chromosomal region should facilitate the cloning of the target genes and provide critical clues to understanding the mechanisms that contribute to the evolution of adult and childhood cancers.
Primary cicatricial alopecia (PCA) is a group of inflammatory hair disorders that cause scarring and permanent hair loss. Previous studies have implicated PPARγ, a transcription factor that integrates lipogenic and inflammatory signals, in the pathogenesis of PCA. However, it is unknown what triggers the inflammatory response in these disorders, whether the inflammation is a primary or secondary event in disease pathogenesis, and whether the inflammatory reaction reflects an autoimmune process. In this paper, we show that the cholesterol biosynthetic pathway is impaired in the skin and hair follicles of PCA patients. Treatment of hair follicle cells with BM15766, a cholesterol biosynthesis inhibitor, or 7-dehydrocholesterol (7-DHC), a sterol precursor, stimulates the expression of pro-inflammatory chemokine genes. Painting of mouse skin with 7-DHC or BM15766 inhibits hair growth, causes follicular plugging and induces the infiltration of inflammatory cells into the interfollicular dermis. Our results demonstrate that cholesterologenic changes within hair follicle cells trigger an innate immune response that is associated with the induction of toll-like receptor (TLR) and interferon (IFN) gene expression, and the recruitment of macrophages that surround the hair follicles and initiate their destruction. These findings reveal a previously unsuspected role for cholesterol precursors in PCA pathogenesis and identify a novel link between sterols and inflammation that may prove transformative in the diagnosis and treatment of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.