Functional near infrared spectroscopy (fNIRS) measurements are confounded by signal components originating from multiple physiological causes, whose activities may vary temporally and spatially (across tissue layers, and regions of the cortex). Furthermore, the stimuli can induce evoked effects, which may lead to over or underestimation of the actual effect of interest. Here, we conducted a temporal, spectral, and spatial analysis of fNIRS signals collected during cognitive and hypercapnic stimuli to characterize effects of functional versus systemic responses. We utilized wavelet analysis to discriminate physiological causes and employed long and short source-detector separation (SDS) channels to differentiate tissue layers. Multi-channel measures were analyzed further to distinguish hemispheric differences. The results highlight cardiac, respiratory, myogenic, and very low frequency (VLF) activities within fNIRS signals. Regardless of stimuli, activity within the VLF band had the largest contribution to the overall signal. The systemic activities dominated the measurements from the short SDS channels during cognitive stimulus, but not hypercapnic stimulus. Importantly, results indicate that characteristics of fNIRS signals vary with type of the stimuli administered as cognitive stimulus elicited variable responses between hemispheres in VLF band and task-evoked temporal effect in VLF, myogenic and respiratory bands, while hypercapnic stimulus induced a global response across both hemispheres.
The goal of this study was to examine the effects of task-related variables, such as the difficulty level, problem scenario, and experiment week, on performance and mental workload of 27 healthy adult subjects during problem solving within the spatial navigation transfer (SNT) game. The study reports task performance measures such as total time spent on a task (TT) and reaction time (RT); neurophysiological measures involving the use of functional near-infrared spectroscopy (fNIRS); and a subjective rating scale for self-assessment of mental workload (NASA TLX) to test the related hypothesis. Several within-subject repeated-measures factorial ANOVA models were developed to test the main hypothesis. The results revealed a number of interaction effects for the dependent measures of TT, RT, fNIRS, and NASA TLX. The results showed (1) a decrease in TT and RT across the three levels of difficulty from Week 1 to Week 2; (2) an increase in TT and RT for high and medium cognitive load tasks as compared to low cognitive load tasks in both Week 1 and Week 2; (3) an overall increase in oxygenation from Week 1 to Week 2. These findings confirmed that both the behavioral performance and mental workload were sensitive to task manipulations.
With an increase in consumer demand of video gaming entertainment, the game industry is exploring novel ways of game interaction such as providing direct interfaces between the game and the gamers’ cognitive or affective responses. In this work, gamer’s brain activity has been imaged using functional near infrared spectroscopy (fNIRS) whilst they watch video of a video game (League of Legends) they play. A video of the face of the participants is also recorded for each of a total of 15 trials where a trial is defined as watching a gameplay video. From the data collected, i.e., gamer’s fNIRS data in combination with emotional state estimation from gamer’s facial expressions, the expertise level of the gamers has been decoded per trial in a multi-modal framework comprising of unsupervised deep feature learning and classification by state-of-the-art models. The best tri-class classification accuracy is obtained using a cascade of random convolutional kernel transform (ROCKET) feature extraction method and deep classifier at 91.44%. This is the first work that aims at decoding expertise level of gamers using non-restrictive and portable technologies for brain imaging, and emotional state recognition derived from gamers’ facial expressions. This work has profound implications for novel designs of future human interactions with video games and brain-controlled games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.