Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
PURPOSE To increase awareness, outline strategies, and offer guidance on the recommended management of immune-related adverse events (irAEs) in patients treated with immune checkpoint inhibitor (ICPi) therapy. METHODS A multidisciplinary panel of medical oncology, dermatology, gastroenterology, rheumatology, pulmonology, endocrinology, neurology, hematology, emergency medicine, nursing, trialists, and advocacy experts was convened to update the guideline. Guideline development involved a systematic literature review and an informal consensus process. The systematic review focused on evidence published from 2017 through 2021. RESULTS A total of 175 studies met the eligibility criteria of the systematic review and were pertinent to the development of the recommendations. Because of the paucity of high-quality evidence, recommendations are based on expert consensus. RECOMMENDATIONS Recommendations for specific organ system–based toxicity diagnosis and management are presented. While management varies according to the organ system affected, in general, ICPi therapy should be continued with close monitoring for grade 1 toxicities, except for some neurologic, hematologic, and cardiac toxicities. ICPi therapy may be suspended for most grade 2 toxicities, with consideration of resuming when symptoms revert ≤ grade 1. Corticosteroids may be administered. Grade 3 toxicities generally warrant suspension of ICPis and the initiation of high-dose corticosteroids. Corticosteroids should be tapered over the course of at least 4-6 weeks. Some refractory cases may require other immunosuppressive therapy. In general, permanent discontinuation of ICPis is recommended with grade 4 toxicities, except for endocrinopathies that have been controlled by hormone replacement. Additional information is available at www.asco.org/supportive-care-guidelines .
PURPOSE To increase awareness, outline strategies, and offer guidance on the recommended management of immune-related adverse events (irAEs) in patients treated with chimeric antigen receptor (CAR) T-cell therapy. METHODS A multidisciplinary panel of medical oncology, neurology, hematology, emergency medicine, nursing, trialists, and advocacy experts was convened to develop the guideline. Guideline development involved a systematic literature review and an informal consensus process. The systematic review focused on evidence published from 2017 to 2021. RESULTS The systematic review identified 35 eligible publications. Because of the paucity of high-quality evidence, recommendations are based on expert consensus. RECOMMENDATIONS The multidisciplinary team issued recommendations to aid in the recognition, workup, evaluation, and management of the most common CAR T-cell–related toxicities, including cytokine release syndrome, immune effector cell–associated neurotoxicity syndrome, B-cell aplasia, cytopenias, and infections. Management of short-term toxicities associated with CAR T cells begins with supportive care for most patients, but may require pharmacologic interventions for those without adequate response. Management of patients with prolonged or severe CAR T-cell–associated cytokine release syndrome includes treatment with tocilizumab with or without a corticosteroid. On the basis of the potential for rapid decline, patients with moderate to severe immune effector cell–associated neurotoxicity syndrome should be managed with corticosteroids and supportive care. Additional information is available at www.asco.org/supportive-care-guidelines .
PURPOSE To update recommendations of the ASCO systemic therapy for hormone receptor (HR)-positive metastatic breast cancer (MBC) guideline. METHODS An Expert Panel conducted a systematic review to identify new, potentially practice-changing data. RESULTS Fifty-one articles met eligibility criteria and form the evidentiary basis for the recommendations. RECOMMENDATIONS Alpelisib in combination with endocrine therapy (ET) should be offered to postmenopausal patients, and to male patients, with HR-positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, ABC, or MBC following prior endocrine therapy with or without a cyclin-dependent kinase (CDK) 4/6 inhibitor. Clinicians should use next-generation sequencing in tumor tissue or cell-free DNA in plasma to detect PIK3CA mutations. If no mutation is found in cell-free DNA, testing in tumor tissue, if available, should be used as this will detect a small number of additional patients with PIK3CA mutations. There are insufficient data at present to recommend routine testing for ESR1 mutations to guide therapy for HR-positive, HER2-negative MBC. For BRCA1 or BRCA2 mutation carriers with metastatic HER2-negative breast cancer, olaparib or talazoparib should be offered in the 1st-line through 3rd-line setting. A nonsteroidal aromatase inhibitor (AI) and a CDK4/6 inhibitor should be offered to postmenopausal women with treatment-naïve HR-positive MBC. Fulvestrant and a CDK4/6 inhibitor should be offered to patients with progressive disease during treatment with AIs (or who develop a recurrence within 1 year of adjuvant AI therapy) with or without one line of prior chemotherapy for metastatic disease, or as first-line therapy. Treatment should be limited to those without prior exposure to CDK4/6 inhibitors in the metastatic setting. Additional information can be found at www.asco.org/breast-cancer-guidelines .
Triple-negative breast cancer (TNBC) is a heterogeneous disease with poorer outcomes compared to other breast cancer subtypes. Contributing to the worse prognosis in TNBC is the higher rates of relapse and rapid progression after relapse. Advances in targeted therapeutics and conventional chemotherapy for TNBC have been stymied due to the lack of specific targets. Moreover, the responses to chemotherapy in TNBC lack durability, partially accounting for the higher rates of relapse. Immunotherapy, notably immune-checkpoint blockade, has shown to improve survival and maintain robust antitumor responses in both hematologic and solid malignancies. Unlike lung cancer, melanoma, and bladder cancer, most breast cancers are not inherently immunogenic and typically have low T cell infiltration. However, among breast cancer subtypes, TNBC is characterized by greater tumor immune infiltrate and higher degree of stromal and intratumoral tumor-infiltrating lymphocytes (TILs), a predictive marker for responses to immunotherapy. Moreover, in TNBC, the high number of stromal TILs is predictive of more favorable survival outcomes and response to chemotherapy. Immunotherapy is being extensively explored in TNBC and clinical trials are showing some promising results. This article focuses on the rationale for immunotherapy in TNBC, to explore and discuss preclinical data, results from early clinical trials, and to summarize some ongoing trials. We will also discuss the potential application of immunotherapy in TNBC from a clinician’s perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.