A standard model for image reconstruction involves the minimization of a data-fidelity term along with a regularizer, where the optimization is performed using proximal algorithms such as ISTA and ADMM. In plug-and-play (PnP) regularization, the proximal operator (associated with the regularizer) in ISTA and ADMM is replaced by a powerful image denoiser. Although PnP regularization works surprisingly well in practice, its theoretical convergence-whether convergence of the PnP iterates is guaranteed and if they minimize some objective function-is not completely understood even for simple linear denoisers such as nonlocal means. In particular, while there are works where either iterate or objective convergence is established separately, a simultaneous guarantee on iterate and objective convergence is not available for any denoiser to our knowledge. In this paper, we establish both forms of convergence for a special class of linear denoisers. Notably, unlike existing works where the focus is on symmetric denoisers, our analysis covers nonsymmetric denoisers such as nonlocal means and almost any convex data-fidelity. The novelty in this regard is that we make use of the convergence theory of averaged operators and we work with a special inner product (and norm) derived from the linear denoiser; the latter requires us to appropriately define the gradient and proximal operators associated with the datafidelity term. We validate our convergence results using image reconstruction experiments.
We consider the problem of approximating a truncated Gaussian kernel using Fourier (trigonometric) functions. The computation-intensive bilateral filter can be expressed using fast convolutions by applying such an approximation to its range kernel, where the truncation in question is the dynamic range of the input image. The error from such an approximation depends on the period, the number of sinusoids, and the coefficient of each sinusoid. For a fixed period, we recently proposed a model for optimizing the coefficients using least-squares fitting. Following the Compressive Bilateral Filter (CBF), we demonstrate that the approximation can be improved by taking the period into account during the optimization. The accuracy of the resulting filtering is found to be at least as good as CBF, but significantly better for certain cases. The proposed approximation can also be used for non-Gaussian kernels, and it comes with guarantees on the filtering accuracy.
Existing fast algorithms for bilateral and nonlocal means filtering mostly work with grayscale images. They cannot easily be extended to high-dimensional data such as color and hyperspectral images, patch-based data, flow-fields, etc. In this paper, we propose a fast algorithm for high-dimensional bilateral and nonlocal means filtering. Unlike existing approaches, where the focus is on approximating the data (using quantization) or the filter kernel (via analytic expansions), we locally approximate the kernel using weighted and shifted copies of a Gaussian, where the weights and shifts are inferred from the data. The algorithm emerging from the proposed approximation essentially involves clustering and fast convolutions, and is easy to implement. Moreover, a variant of our algorithm comes with a guarantee (bound) on the approximation error, which is not enjoyed by existing algorithms. We present some results for high-dimensional bilateral and nonlocal means filtering to demonstrate the speed and accuracy of our proposal. Moreover, we also show that our algorithm can outperform state-of-the-art fast approximations in terms of accuracy and timing.
The bilateral filter is a popular non-linear smoother that has applications in image processing, computer vision, and computational photography. The novelty of the filter is that a range kernel is used in tandem with a spatial kernel for performing edge-preserving smoothing, where both kernels are usually Gaussian. A direct implementation of the bilateral filter is computationally expensive, and several fast approximations have been proposed to address this problem. In particular, it was recently demonstrated in a series of papers that a fast and accurate approximation of the bilateral filter can be obtained by approximating the Gaussian range kernel using polynomials and trigonometric functions. By adopting some of the ideas from this line of work, we propose a fast algorithm based on the discrete Fourier transform of the samples of the range kernel. We develop a parallel C implementation of the resulting algorithm for Gaussian kernels, and analyze the effect of various extrinsic and intrinsic parameters on the approximation quality and the run time. A key component of the implementation are the recursive Gaussian filters of Deriche and Young. Source CodeThe ANSI C source code used in the demo can be downloaded from the web page of this article 1 . Compilation and usage instruction are included in the README.txt of the archive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.