In the classical bilateral filter, a fixed Gaussian range kernel is used along with a spatial kernel for edge-preserving smoothing. We consider a generalization of this filter, the socalled adaptive bilateral filter, where the center and width of the Gaussian range kernel is allowed to change from pixel to pixel. Though this variant was originally proposed for sharpening and noise removal, it can also be used for other applications such as artifact removal and texture filtering. Similar to the bilateral filter, the brute-force implementation of its adaptive counterpart requires intense computations. While several fast algorithms have been proposed in the literature for bilateral filtering, most of them work only with a fixed range kernel. In this paper, we propose a fast algorithm for adaptive bilateral filtering, whose complexity does not scale with the spatial filter width. This is based on the observation that the concerned filtering can be performed purely in range space using an appropriately defined local histogram. We show that by replacing the histogram with a polynomial and the finite range-space sum with an integral, we can approximate the filter using analytic functions. In particular, an efficient algorithm is derived using the following innovations: the polynomial is fitted by matching its moments to those of the target histogram (this is done using fast convolutions), and the analytic functions are recursively computed using integration-by-parts. Our algorithm can accelerate the brute-force implementation by at least 20×, without perceptible distortions in the visual quality. We demonstrate the effectiveness of our algorithm for sharpening, JPEG deblocking, and texture filtering.
A standard model for image reconstruction involves the minimization of a data-fidelity term along with a regularizer, where the optimization is performed using proximal algorithms such as ISTA and ADMM. In plug-and-play (PnP) regularization, the proximal operator (associated with the regularizer) in ISTA and ADMM is replaced by a powerful image denoiser. Although PnP regularization works surprisingly well in practice, its theoretical convergence-whether convergence of the PnP iterates is guaranteed and if they minimize some objective function-is not completely understood even for simple linear denoisers such as nonlocal means. In particular, while there are works where either iterate or objective convergence is established separately, a simultaneous guarantee on iterate and objective convergence is not available for any denoiser to our knowledge. In this paper, we establish both forms of convergence for a special class of linear denoisers. Notably, unlike existing works where the focus is on symmetric denoisers, our analysis covers nonsymmetric denoisers such as nonlocal means and almost any convex data-fidelity. The novelty in this regard is that we make use of the convergence theory of averaged operators and we work with a special inner product (and norm) derived from the linear denoiser; the latter requires us to appropriately define the gradient and proximal operators associated with the datafidelity term. We validate our convergence results using image reconstruction experiments.
Plug-and-play (PnP) method is a recent paradigm for image regularization, where the proximal operator (associated with some given regularizer) in an iterative algorithm is replaced with a powerful denoiser. Algorithmically, this involves repeated inversion (of the forward model) and denoising until convergence. Remarkably, PnP regularization produces promising results for several restoration applications. However, a fundamental question in this regard is the theoretical convergence of the PnP iterations, since the algorithm is not strictly derived from an optimization framework. This question has been investigated in recent works, but there are still many unresolved problems. For example, it is not known if convergence can be guaranteed if we use generic kernel denoisers (e.g. nonlocal means) within the ISTA framework (PnP-ISTA). We prove that, under reasonable assumptions, fixed-point convergence of PnP-ISTA is indeed guaranteed for linear inverse problems such as deblurring, inpainting and superresolution (the assumptions are verifiable for inpainting). We compare our theoretical findings with existing results, validate them numerically, and explain their practical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.