The integration of brain monitoring based on electroencephalography (EEG) into everyday life has been hindered by the limited portability and long setup time of current wearable systems as well as by the invasiveness of implanted systems (e.g. intracranial EEG). We explore the potential to record EEG in the ear canal, leading to a discreet, unobtrusive, and user-centered approach to brain monitoring. The in-the-ear EEG (Ear-EEG) recording concept is tested using several standard EEG paradigms, benchmarked against standard onscalp EEG, and its feasibility proven. Such a system promises a number of advantages, including fixed electrode positions, user comfort, robustness to electromagnetic interference, feedback to the user, and ease of use. The Ear-EEG platform could also support additional biosensors, extending its reach beyond EEG to provide a powerful health-monitoring system for those applications that require long recording periods in a natural environment.
A method for brain monitoring based on measuring the electroencephalogram (EEG) from electrodes placed in-the-ear (ear-EEG) was recently proposed. The objective of this study is to further characterize the ear-EEG and perform a rigorous comparison against conventional on-scalp EEG. This is achieved for both auditory and visual evoked responses, over steady-state and transient paradigms, and across a population of subjects. The respective steady-state responses are evaluated in terms of signal-to-noise ratio and statistical significance, while the qualitative analysis of the transient responses is performed by considering grand averaged event-related potential (ERP) waveforms. The outcomes of this study demonstrate conclusively that the ear-EEG signals, in terms of the signal-to-noise ratio, are on par with conventional EEG recorded from electrodes placed over the temporal region.
Abstract-We introduce a novel in-ear sensor which satisfies key design requirements for wearable electroencephalography (EEG) -it is discreet, unobtrusive and capable of capturing highquality brain activity from the ear canal. Unlike initial designs which utilised custom earpieces and require a costly and timeconsuming manufacturing process, we here extend the generic earmould concept to make ear-EEG suitable for immediate and widespread use. We propose a departure from silicone earmoulds, and instead outline a sensor based on a viscoelastic substrate and conductive cloth electrodes, both of which are shown to possess a number of desirable mechanical and electrical properties. Owing to its viscoelastic nature, the earpiece exhibits good conformance to the shape of the ear canal, thus providing stable electrodeskin interface, while cloth electrodes require only saline solution to establish low impedance contact. The analysis highlights the distinguishing advantages compared to the current state-of-theart in ear-EEG. We demonstrate that such a device can be readily used for the measurement of various EEG responses.
Highlights Auditory middle and late latency responses can be recorded reliably from ear-EEG.For sources close to the ear, ear-EEG has the same signal-to-noise-ratio as scalp.Ear-EEG is an excellent match for power spectrum-based analysis.A method for measuring electroencephalograms (EEG) from the outer ear, so-called ear-EEG, has recently been proposed. The method could potentially enable robust recording of EEG in natural environments. The objective of this study was to substantiate the ear-EEG method by using a larger population of subjects and several paradigms. For rigor, we considered simultaneous scalp and ear-EEG recordings with common reference. More precisely, 32 conventional scalp electrodes and 12 ear electrodes allowed a thorough comparison between conventional and ear electrodes, testing several different placements of references. The paradigms probed auditory onset response, mismatch negativity, auditory steady-state response and alpha power attenuation. By comparing event related potential (ERP) waveforms from the mismatch response paradigm, the signal measured from the ear electrodes was found to reflect the same cortical activity as that from nearby scalp electrodes. It was also found that referencing the ear-EEG electrodes to another within-ear electrode affects the time-domain recorded waveform (relative to scalp recordings), but not the timing of individual components. It was furthermore found that auditory steady-state responses and alpha-band modulation were measured reliably with the ear-EEG modality. Finally, our findings showed that the auditory mismatch response was difficult to monitor with the ear-EEG. We conclude that ear-EEG yields similar performance as conventional EEG for spectrogram-based analysis, similar timing of ERP components, and equal signal strength for sources close to the ear. Ear-EEG can reliably measure activity from regions of the cortex which are located close to the ears, especially in paradigms employing frequency-domain analyses.
The prototyped dry-contact ear-EEG platform represents an important technological advancement of the method in terms of user-friendliness because it eliminates the need for gel in the electrode-skin interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.