People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: giving adequate success rates to specifically protected groups. In contrast, the alternative paradigm of individual fairness has received relatively little attention, and this paper advances this less explored direction. The paper introduces a method for probabilistically mapping user records into a lowrank representation that reconciles individual fairness and the utility of classifiers and rankings in downstream applications. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on a variety of real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.
People are shifting from traditional news sources to online news at an incredibly fast rate. However, the technology behind online news consumption promotes content that con rms the users' existing point of view. This phenomenon has led to polarization of opinions and intolerance towards opposing views. Thus, a key problem is to model information lter bubbles on social media and design methods to eliminate them. In this paper, we use a machine-learning approach to learn a liberal-conservative ideology space on Twitter, and show how we can use the learned latent space to tackle the lter bubble problem.We model the problem of learning the liberal-conservative ideology space of social media users and media sources as a constrained non-negative matrix-factorization problem. Our model incorporates the social-network structure and content-consumption information in a joint factorization problem with shared latent factors. We validate our model and solution on a real-world Twitter dataset consisting of controversial topics, and show that we are able to separate users by ideology with over 90 % purity. When applied to media sources, our approach estimates ideology scores that are highly correlated (Pearson correlation 0.9) with ground-truth ideology scores. Finally, we demonstrate the utility of our model in real-world scenarios, by illustrating how the learned ideology latent space can be used to develop exploratory and interactive interfaces that can help users in di using their information lter bubble.
We revisit the notion of individual fairness proposed by Dwork et al. A central challenge in operationalizing their approach is the difficulty in eliciting a human specification of a similarity metric. In this paper, we propose an operationalization of individual fairness that does not rely on a human specification of a distance metric. Instead, we propose novel approaches to elicit and leverage side-information on equally deserving individuals to counter subordination between social groups. We model this knowledge as a fairness graph, and learn a unified Pairwise Fair Representation (PFR) of the data that captures both data-driven similarity between individuals and the pairwise side-information in fairness graph. We elicit fairness judgments from a variety of sources, including humans judgments for two real-world datasets on recidivism prediction (COMPAS) and violent neighborhood prediction (Crime & Communities). Our experiments show that the PFR model for operationalizing individual fairness is practically viable.
The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similarity metrics from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. Assuming that people's judgments encode the fairness metric they adhere to, we leverage prior work on metric learning and attempt to learn people's similarity metrics from these judgments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.